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Abstract—
The objective of this work is to automatically generate a large number of images for a specified object class. A multi-modal approach
employing both text, meta data and visual features is used to gather many high-quality images from the web.
Candidate images are obtained by a text based web search querying on the object identifier (e.g. the word penguin). The web pages
and the images they contain are downloaded. The task is then to remove irrelevant images and re-rank the remainder. First, the images
are re-ranked based on the text surrounding the image and meta data features. A number of methods are compared for this re-ranking.
Second, the top-ranked images are used as (noisy) training data and a SVM visual classifier is learnt to improve the ranking further.
We investigate the sensitivity of the cross-validation procedure to this noisy training data. The principal novelty of the overall method is
in combining text/meta-data and visual features in order to achieve a completely automatic ranking of the images.
Examples are given for a selection of animals, vehicles and other classes totalling 18 classes. The results are assessed by
precision/recall curves on ground truth annotated data and by comparison to previous approaches including those of Berg et al . [5]
and Fergus et al . [12].
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1 INTRODUCTION

The availability of image databases has proved invaluable for
training and testing object class models during the recent surge
of interest in object recognition. However, producing such
databases containing a large number of images and with high
precision is still an arduous manual task. Image search engines
apparently provide an effortless route, but currently are limited
by poor precision of the returned images and restrictions on the
total number of images provided. For example, with Google
Image Search the precision is as low as 32% on one of the
classes tested here (shark) and averages at 39%, and downloads
are restricted to 1000 images.

Fergus et al. [12, 11], Lin et al. [20], Li et al. [19], Collins
et al. [8], Vijayanarasimhan et al. [33] and Fritz&Schiele [14]
dealt with the precision problem by re-ranking the images
downloaded from an image search. The method in [12] in-
volved visual clustering of the images by using probabilistic
Latent Semantic Analysis (pLSA) [15] over a visual vocab-
ulary, [19] used a Hierarchical Dirichlet Process instead of
pLSA, and [33] use multiple instance learning to learn the
visual models. Lin et al. [20] re-ranked using the text on the
original page from which the image was obtained. However,
for all these methods the yield is limited by the restriction on
the total number of images provided by the image search.

Berg et al. [5] overcome the download restriction by starting
from a web search instead of an image search. This search can
generate thousands of images. Their method then proceeds
in two stages: first, topics are discovered based on words
occurring on the web pages using Latent Dirichlet Allocation
(LDA) [6] on text only. Image clusters for each topic are
formed by selecting images where nearby text is top ranked by
the topic. A user then partitions the clusters into positive and
negative for the class. Second, images and the associated text
from these clusters are used as exemplars to train a classifier

based on voting on visual (shape, colour, texture) and text
features. The classifier is then used to re-rank the downloaded
dataset. Note, the user labelling of clusters avoids the problem
of polysemy, as well as providing good training data for the
classifier. The method succeeds in achieving a greater yield,
but at the cost of manual intervention.

Our objective in this work is to harvest a large number
of images of a particular class automatically, and to achieve
this with high precision. Our motivation is to provide training
databases so that a new object model can be learnt effortlessly.
Following [5] we also use web search to obtain a large pool of
images and the web pages that contain them. The low precision
does not allow us to learn a class model from such images
using vision alone. The challenge then is how best to combine
text, meta-data and visual information in order to achieve the
best image re-ranking.

The two main contributions are: first, we show in section 3
that meta-data and text attributes on the web page containing
the image provide a useful estimate of the probability that the
image is in class, and thence can be used to successfully rank
images in the downloaded pool. Second, we show in section 4
that this probability is sufficient to provide (noisy) training
data for a visual classifier, and that this classifier delivers a
superior re-ranking to that produced by text alone. Figure 1
visualises this two stage improvement over the initially down-
loaded images. The class independent text ranker significantly
improves this unranked baseline and is itself improved by
quite a margin when the vision based ranker (trained on the
text ranker results) is employed. We compared our proposed
discriminative framework (SVM) to unsupervised methods
(topic models) concluding that the discriminative approach is
better suited for this task and thus the focus of this work.

Others have used text and images together, however in a
slightly different setting. For example, Barnard et al. [2] use
groundtruth annotated images as opposed to noisy annotation
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Fig. 1. Text & visual ranking vs. unranked-baseline:
precision recall plot for the text re-ranking, the visual
ranking trained on the text ranking, and the (unranked)
original downloaded images, for the “shark” query.

in-class non-class
good ok

non-abst. abstract non-abst. abstract

Fig. 2. Image annotations: Example images corre-
sponding to annotation categories for the class penguin.

stemming from web pages, as in our case. Other work of Berg
et al. [4] uses text from the Internet, but focused on identifying
a specific class rather than general object classes.

We show in section 5.1 that our automatic method achieves
superior ranking results to those produced by the method of
Berg et al. [5] and also to that of Google Image Search.

This paper is an extended version of [28]. The extensions
include: a comparison of different text-ranking methods, ad-
ditional visual features (HOG), an investigation of the cross-
validation to noise in the training data, and a comparison of
different topic models (for the visual features).

2 THE DATABASES

This section describes the methods for downloading the initial
pool of images (together with associated meta-data) from
the Internet, and the initial filtering that is applied. For the
purposes of training classifiers and for assessing precision and
recall the downloaded images are annotated manually for 18

classes: airplane (ap), beaver (bv), bikes (bk), boat (bt), camel
(cm), car (cr), dolphin (dp), elephant (ep), giraffe (gf), guitar
(gr), horse (hs), kangaroo (kg), motorbikes (mb), penguin (pg),
shark (sk), tiger (tr), wristwatch (ww), zebra (zb).
Data collection: We compare three different approaches to
downloading images from the web. The first approach, named
WebSearch, submits the query word to Google web search
and all images that are linked within the returned web pages
are downloaded. Google limits the number of returned web
pages to 1000, but many of the web pages contain multiple
images, so in this manner thousands of images are obtained.
The second approach, ImageSearch, starts from Google
image search (rather than web search). Google image search
limits the number of returned images to 1000, but here each of
the returned images is treated as a “seed” – further images are
downloaded from the web page from where the seed image
originated. The third approach, GoogleImages, includes
only the images directly returned by Google image search (a
subset of those returned by ImageSearch). The query can
consist of a single word or more specific descriptions such as
“penguin animal” or “penguin OR penguins”. Images smaller
than 120× 120 are discarded. In addition to the images, text
surrounding the image HTML tag is downloaded together with
other meta-data such as the image filename.
Groundtruth annotation: In a similar manner to Fergus et
al. [12], images are divided into three categories:

in-class-good: Images that contain one or many class in-
stances in a clearly visible way (without major occlusion,
lighting deterioration or background clutter and of sufficient
size).

in-class-ok: Images that show parts of a class instance,
or obfuscated views of the object due to lighting, clutter,
occlusion and the like.

non-class: Images not belonging to in-class.
The good and ok sets are further divided into two subclasses:

abstract: Images that do not resemble realistic natural
objects (e.g. drawings, non realistic paintings, comics, casts
or statues).

non-abstract: Images not belonging to the previous class.
Example annotations for the class penguin are shown in

figure 2. The full dataset is published in [29]. As is usual
in annotation there are ambiguous cases, e.g. deciding when
occlusion is sufficiently severe to classify as ok rather than
good, or when the objects are too small. The annotations were
made as consistent as possible by a final check from one
person. Note, the abstract vs. non-abstract categorisation is
not general but is suitable for the object classes we consider
in this paper. For example, it would not be useful if the class
of interest was “graph” or “statue” or a similar more abstract
category.

Table 1 details the statistics for each of the three
retrieval techniques (WebSearch, ImageSearch and
GoogleImages). Note that some images are common be-
tween the methods. ImageSearch gives a very low precision
(only about 4%) and is not used for the harvesting experiments.
This low precision is probably due to the fact that Google
selects many images from web-gallery pages, which contain
images of all sorts. Google is able to select the in-class
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Service in-class non-class precision
WebSearch 8773 25252 26%

ImageSearch 5963 135432 4%
GoogleImages 4416 6766 39%

TABLE 1
Statistics by source: The statistics of downloaded images

for different retrieval techniques for 18 classes.

images from those pages, e.g. the ones with the object-
class in the filename, however if we use those web-pages
as seeds the overall precision greatly decreases. Therefore,
we only use WebSearch and GoogleImages, which are
merged into one dataset per object class. Table 2 lists the
18 categories downloaded and the corresponding statistics for
in-class and non-class images. The overall precision of the
images downloaded for all 18 classes is about 29%.

Due to the great diversity of images available on the Internet
and because of how we retrieve the images, it is difficult
to make general observations on how these databases look.
However, it is clear that polysemy affects the returned images.
Interestingly, this is not a problem that could be predicted
directly from the English word, since most of the classes we
search for don’t have direct polysemous meanings, i.e. they
are not polysemous in the sense of “bank” (as in place to get
money, or river bank) for example. It is rather that the words
correspond to brands or product names (“leopard tank”) or
team names (the NHL ice hockey team “San Jose Sharks”)
or are used as attributes (“tiger shark”). Apart from that, the
in-class images occur in almost all variations imaginable, as
sharks crashed into houses or other oddities. Even though
context [31] can clearly be important in re-ranking the images
(e.g. camel and kangaroo in desert-like images), it will have
its limitations due to the variety of occurrences of the object.

2.1 Removing Drawings & Symbolic Images

Since we are mostly interested in building databases for natural
image recognition, we ideally would like to remove all abstract
images from the downloaded images. However, separating
abstract images from all others automatically is very chal-
lenging for classifiers based on visual features. Instead we
tackle the easier visual task of removing drawings & symbolic
images. These include: comics, graphs, plots, maps, charts,
drawings and sketches, where the images can be fairly simply
characterised by their visual features (see below). Example
images are shown in figure 3. Their removal significantly re-
duces the number of non-class images, improving the resulting
precision of the object class datasets as shown in table 2
(overall precision goes from 29% to 35%). Filtering out such
images also has the aim of removing this type of abstract
image from the in-class images.
Learning the filter: We train a radial basis function Support
Vector Machine (SVM) on a hand labelled dataset (examples
in figure 3). After the initial training no further user interaction
is required. In order to obtain this dataset, images were
downloaded using ImageSearch with one level of recursion

downloaded images after drawing&symbolic filtering
Class in-cl. non-cl. prec. in-cl. non-cl. prec. false pos.

airplane (ap) 904 1659 35.27% 635 1007 38.67% 91
beaver (bv) 236 3121 7.03% 160 2195 6.79% 4
bikes (bk) 1268 1931 39.64% 983 1082 47.60% 111
boat (bt) 856 2175 28.24% 726 1354 34.90% 70

camel (cm) 594 1808 24.73% 485 1274 27.57% 46
car (cr) 1128 1042 51.98% 938 568 62.28% 92

dolphin (dp) 791 1416 35.84% 533 906 37.04% 81
elephant (ep) 937 1558 37.56% 763 1007 43.11% 11
giraffe (gf) 945 1267 42.72% 802 763 51.25% 32
guitar (gr) 1219 2035 37.46% 873 832 51.20% 248
horse (hs) 1229 1720 41.68% 975 1043 48.32% 78

kangaroo (kg) 418 1763 19.17% 329 1161 22.08% 14
motorbikes (mb) 732 953 43.44% 607 582 51.05% 86

penguin (pg) 748 1400 34.82% 447 794 36.02% 33
shark (sk) 583 1710 25.43% 413 1089 27.50% 60
tiger (tr) 379 2068 15.49% 311 1274 19.62% 17

wristwatch (ww) 941 957 49.58% 710 549 56.39% 220
zebra (zb) 483 1662 22.52% 416 987 29.65% 19

total 14391 30245 32.24% 11106 18467 37.55% 1313

TABLE 2
Image class statistics of the original downloaded images

using WebSearch&GoogleImages only, and after
applying the drawing&symbolic images removal filter.

(i.e. web pages linked from “seed” web pages are also used)
with queries such as “sketch” or “drawing” or “draft”. The
goal was to retrieve many images and then select suitable
training images manually. The resulting dataset consists of
approximately 1400 drawings&symbolic images, and 2000
non drawings&symbolic images.

Three simple visual only features are used: (i) a colour-
histogram; (ii) a histogram of the L2-norm of the gradient;
(iii) a histogram of the angles (0 . . . π) weighted by the L2-
norm of the corresponding gradient. In all cases 1000 equally
spaced bins are used. The motivation behind this choice of
features is that drawings&symbolic images are characterised
by sharp edges in certain orientations and or a distinctive
colour distribution (e.g. only few colours in large areas). The
method achieves around 90% classification accuracy on the
drawings&symbolic images database (using two-fold cross-
validation).

This classifier is applied to the entire downloaded image
dataset to filter out drawing&symbolic images, before further
processing. The total number of images that are removed for
each class is shown in table 2. In total 42% of non-class
images are removed over all classes. The remaining images
are those used in our experiments. As well as successfully
removing non-class images, the filter also succeeds in remov-
ing an average of 60% (123 images) in-class abstract images,
with a range between 45% (for motorbikes, 40 images) and
85% (for wristwatch, 11 images). There is some loss of the
desired in-class non-abstract images, with on average 13% (90
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Fig. 3. Drawings&symbolic images: Examples of posi-
tive and negative training images.

images) removed, though particular classes lose a relatively
high percentage (28% for shark and wristwatch). Even though
this seems to be a high loss the precision of the resulting
datasets is improved in all cases except for the class shark.

3 RANKING ON TEXTUAL FEATURES
We now describe the re-ranking of the returned images based
on text and meta-data alone. Here we follow and extend the
method proposed by Frankel et al. [13] in using a set of textual
attributes whose presence is a strong indication of the image
content.
Textual features: We use seven features from the text and
HTML-tags on the web page: contextR, context10, filedir,
filename, imagealt, imagetitle, websitetitle.

Filedir, filename and websitetitle are self-explanatory. Con-
text10 includes the ten words on either side of the image-
link. ContextR describes the words on the web-page between
eleven and 50 words away from the image-link. Imagealt and
imagetitle refer to the “alt” and “title” attribute of the image-
tag. The features are intended to be conditionally independent,
given the image content (we address this independence below).
It is difficult to compare directly with the features in [13], since
no precise definition of the features actually used is given.

Context here is defined by the HTML source, not by the
rendered page since the latter depends on screen resolution
and browser type and is an expensive operation. In the text
processing a standard stop list [24] and the Porter stemmer
[25] are used. In addition HTML-tags and domain specific
stop words (such as “html” or “&nbsp;”) are ignored.

We also experimented with a number of other features, such
as the image MIME type (‘gif’, ‘jpeg’ etc. ), but found that
they did not help discrimination.

3.1 Image ranking
Using these seven textual features, the goal is to re-rank the
retrieved images. Each feature is treated as binary: “True” if it
contains the query word (e.g. penguin) and “False” otherwise.
The seven features define a binary feature vector for each
image a= (a1, . . . , a7), and the ranking is then based on the
posterior probability, P (y = in-class|a), of the image being
in-class, where y ∈ {in-class,non-class} is the class-label of
an image.

We learn a class independent ranker in order to re-rank
the images based on the posterior P (y|a). To re-rank images
for one particular class (e.g. penguin) we do not employ the
groundtruth data for that class. Instead, we train the Bayes
classifier (specifically we learn P (a|y), P (y) and P (a)) using
all available annotations, except the class we want to re-rank.
This way we evaluate performance as a completely automatic
class independent image ranker; i.e. for any new and unknown
class, the images can be re-ranked without ever using labelled
groundtruth knowledge of that class.

3.1.1 Ranking models

We compare different Bayesian posterior models for P (y =
in-class|a). Specifically we looked at the suitability of the
following decompositions:
Chow-Liu dependence tree decomposition [7]:

P (a|y) ∝
8∏
1

P (xi|xm(j)) (1)

with x = (a1, . . . , a7, y) and m being a permutation of
(1, . . . , 8). The Chow-Liu model approximates the full joint
dependency graph as a tree by retaining the edges between
variables with the highest mutual information.
Naı̈ve Bayes model:

P (a|y) ∝
7∏
1

P (ai|y) . (2)

Given the class label for an image the text features are assumed
to be independent. For our application this is “obviously” not
the case, e.g. filename and image alternative tag are highly
correlated.
Pairwise dependencies:

P (a|y) ∝
7∏

i,j=1

P (ai, aj |y) . (3)

Only pairwise dependencies are modelled. This is similar to
the Chow-Liu model, but less sparse.
Full joint:

P (a|y) ∝ P (a1, · · · , a7|y) . (4)

The full joint probability distribution is learnt. If the amount
of available training data is too small the learnt model can be
inaccurate.
Mixed naı̈ve Bayes:

P (a|y) ∝ P (a1, . . . , a4|y)

7∏
5

P (ai|y) (5)

where P (a1, . . . , a4|y) is the joint probability of the first four
textual features (contextR, context10, filedir, filename).
Logistic regression: Additionally we evaluate the perfor-
mance using the discriminative logistic regression model,
where

P (y|a) =
1

1 + e−wT a
. (6)
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prec. ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg.
Mixed Naı̈ve Bayes

15% 40.61 30.00 70.44 52.22 49.65 61.16 70.27 70.70 82.39 63.18 57.72 53.93 67.94 68.42 54.05 43.81 78.03 48.41 59.05
100 39.00 31.00 76.00 52.00 47.00 66.00 69.00 77.00 87.00 58.00 58.00 53.00 67.00 69.00 55.00 43.00 79.00 50.00 59.78
avg. 41.67 31.17 58.66 48.97 48.17 66.46 59.18 64.64 76.10 65.71 57.21 40.95 66.62 61.53 42.55 37.61 70.59 52.97 55.94

Pairs
15% 41.52 34.29 67.45 54.64 50.00 61.43 68.42 64.91 82.98 61.95 57.72 57.14 66.42 69.15 43.17 43.40 81.10 53.04 58.82
100 43.00 36.00 66.00 51.00 53.00 61.00 69.00 62.00 79.00 59.00 61.00 53.00 66.00 69.00 38.00 41.00 81.00 49.00 57.61
avg. 46.64 33.47 60.53 45.19 45.63 65.24 59.83 62.28 74.40 65.23 55.18 43.35 65.55 62.74 39.30 38.26 71.69 53.52 54.89

Chow-Liu tree
15% 38.11 19.35 62.45 53.27 47.97 61.16 61.42 64.91 72.22 68.65 55.91 32.88 69.53 57.52 41.10 38.33 66.03 40.67 52.86
100 43.00 19.00 69.00 55.00 50.00 59.00 63.00 65.00 68.00 70.00 58.00 33.00 72.00 56.00 41.00 34.00 80.00 33.00 53.78
avg. 41.11 21.08 56.48 45.30 45.50 66.55 57.18 58.36 73.47 61.44 55.29 38.65 66.13 55.48 42.57 36.01 63.39 45.58 51.64

Naı̈ve Bayes
15% 41.89 38.71 67.45 54.36 50.00 61.71 70.27 64.91 81.25 61.95 57.49 57.14 66.42 70.65 43.17 41.07 81.10 58.65 59.34
100 43.00 36.00 66.00 51.00 54.00 61.00 68.00 62.00 79.00 59.00 61.00 53.00 66.00 69.00 37.00 40.00 81.00 58.00 58.00
avg. 46.67 34.21 60.58 45.22 45.49 65.11 59.85 62.32 74.36 65.52 55.24 43.46 65.55 62.93 39.79 38.43 71.69 52.13 54.92

Full joint
15% 41.33 32.00 69.76 53.54 47.02 59.83 71.56 72.55 85.40 61.95 58.92 39.67 65.44 67.71 45.45 41.07 79.84 55.96 58.28
100 37.00 32.00 77.00 56.00 45.00 62.00 71.00 74.00 84.00 57.00 55.00 42.00 63.00 66.00 45.00 41.00 82.00 55.00 58.00
avg. 42.13 32.19 60.59 49.26 49.09 66.64 62.60 63.18 75.88 65.75 57.64 37.64 65.59 62.12 44.92 38.64 71.33 54.13 55.52

TABLE 3
Precision of textual re-ranking: The performance of the textual re-ranking for all 18 classes over different models:

precision at 15% recall, precision at 100 images recall, and average precision. The precision is given as a
percentage. The last column gives the average over all classes. Mixed naı̈ve Bayes performs best and was picked for

all subsequent experiments.
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Fig. 4. Average precision-recall of text-rankers. The
precision-recall curve averaged over all 18 classes for
each of the described ranking methods.

3.1.2 Text re-ranking results

We assess the performance by reporting precision at various
points of recall as well as average precision in table 3. Figure 4
and 5 give an overview of the different methods and their
performance. Figure 6 shows the precision-recall curves for
selected classes using the mixed naı̈ve model. It can clearly
be seen that precision is highly increased at the lower recall
levels, compared to the average precision of table 2.

The mixed model (5) gave slightly better performance than
other factorisations on 100 images recall, and reflects the fact
that the first four features are less independent from each
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Fig. 5. Comparison of text-rankers. The precision at
15% recall for all 18 classes and four different models.
See table 3 for details and the average precision over all
classes.

other than the remaining three. Overall all models perform
comparably and the differences are negligible, except for the
Chow-Lui dependence tree which performs slightly worse. We
chose the mixed naı̈ve model for our experiments as the 100
images recall is more related to our selection of training data,
than average precision or precision at 15% recall.

A separate set of experiments was carried out to measure
how the performance of the text ranker varies with the number
and choice of classes used for training. Ideally we would like
to compare P (a|y), P (y) and P (a) learnt using different num-
bers of training classes. However, given our goal of ranking
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Fig. 6. Text based re-ranking: precision vs. recall es-
timated for each class with abstract images considered
in-class using the mixed naı̈ve Bayes model. The labels
are shown in decreasing order of precision at 15% recall.
The recall precision curves are only shown for selected
classes for clarity. The average over all 18 classes is also
shown.

images we instead compare these probabilities indirectly by
assessing precision at 15% recall. We find that the performance
is almost unaltered by the choice of training classes provided
more than five classes (chosen randomly) are used for training.
Discussion: As can be seen from figure 6 the text re-ranker
performs well on average, and significantly improves the
precision up to quite a high recall level (see figure 8 and 9
for top ranked images). In section 4 we will show that this is
sufficient to train a visual classifier. For some classes the text
ranker performs very well (e.g. wristwatch, giraffe) for others
it performs rather poorly (e.g. airplane, beaver, camel, tiger).
Visual inspection of the highly ranked “outlier” (non-class)
images in the text ranked lists gives some explanation for these
performances. Classes that perform well (wristwatch, giraffe)
generally have outliers that are unrelated to each other. In
contrast for the classes that perform poorly the outlier images
are related and result from lack of discriminativity of the query
word – for example for airplanes there are images of airplane
food, airports, toy airplanes, paper airplanes, airplane interiors,
and advertisements with comic airplanes. Other classes suffer
from the type of polysemy described in section 2: for camels
there are brand and cigarette related outliers; and for tiger there
is the attribute problem with images of helicopters, tanks, fish
(sharks), boxing, golf, stones, and butterflies.

These examples cover very different classes from animals to
various man-made objects. Generalisation to other well defined
object classes is demonstrated in the experiments of section 5.1
on the object classes of [5] and [12].

We investigated two alternative text-based classifiers, pLSA
and SVM, in addition to the Bayes estimator finally adopted,
but found they had inferior performance. For the SVM the
same binary text features a were used. It is possible that the
binary features lead to the poor performance of the SVM.
For the pLSA we used context10 and contextR (similar to

[5]). Due to problems in the pLSA clustering, the problem
of how to select the right topic without user interaction as
in [5], and the question of how to use the additional binary
features (e.g. filename) in a principled manner, we adopted the
Bayes estimator instead.

The text re-ranking is not meant to compete with the
performance of Internet image search engines, which could
also be used in our algorithm and given their recent perfor-
mance improvements would be a reasonable choice. Instead
we decided to use this simple setup to gather the training data
for our visual models, with the focus of independence and a
more controlled setup, considering the fast changing quality
of image search engines.

4 RANKING ON VISUAL FEATURES

The text re-ranking of section 3 associates a posterior proba-
bility with each image as to whether it contains the query class
or not. The problem we are now faced with is how to use this
information to train a visual classifier which would improve
the ranking further. The problem is one of training from noisy
data: we need to decide which images to use for positive and
negative training data and how to select a validation set in
order to optimise the parameters of the classifier.

We first describe the visual features used, and then how the
classifier is trained.
Visual features: We follow the approach of [12] and use a
variety of region detectors with a common visual vocabulary in
the bag of visual words model framework (BOW). All images
are first resized to 300 pixels in width. Regions are detected
using: difference of Gaussians, Multiscale-Harris [22], Kadir’s
saliency operator [18], and points sampled from Canny edge
points. Each image region is represented as a 72 dimensional
SIFT [21] descriptor. A separate vocabulary consisting of 100
visual words is learnt for each detector using k-means, and
these vocabularies are then combined into a single one of
400 words. Finally, the descriptor of each region is assigned
to the vocabulary. The software for the detectors is obtained
from [32]. Fuller implementation details are given in [12],
and are reproduced in our implementation. The 72 dimensional
SIFT is based on the work in [12] and driven by the motivation
that a coarser spatial binning can improve generalisation as
opposed to a finer binning that is more suitable for particular
object matching.

In addition to the descriptors used in [12] we add the widely
used HOG descriptor [9], computed over the whole image to
incorporate some spatial layout into the model. It was also
used in a similar setting in [14]. We use a cellsize of 8 pixels,
a blocksize of one cell, and 9 contrast invariant gradient bins.
This results in a 900 dimensional feature vector, as the images
where resized to 80 × 80 pixels. The two descriptors are
concatenated resulting in a 1300 dimensional feature vector
per image.

4.1 Training the visual classifier
At this point we can select n+ positive training images from
the top of the text ranked list, or those that have a posterior
probability above some threshold, but a subset of these positive
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images will be “noisy”, i.e. will not be in-class. Table 4 (text)
gives an idea of the noise from the proportion of outliers.
It averages at 40% if n+ = 100. However, we can assume
that the non-class images are not visually consistent – an
assumption verified to some extent by the results in section 4.2.
The case of negative images is more favourable: we select n–
images at random from all downloaded images (i.e. from all
18 classes, tens of thousands of images) and the chances of
any image being of a particular class is very low. We did not
choose to select the n– images from the low ranked images
of the text-ranker output, because the probability of finding
in-class images there is higher than finding them in the set of
all downloaded images.

Given this situation we choose to use a SVM classifier, since
it has the potential to train despite noise in the data. The SVM
training minimizes the following sum [23]:

min
w,b,ξ

1

2
wTw + C+

∑
i:yi=1

ξi + C−
∑

j:yj=−1
ξj (7)

subject to yl
(
wT Φ(xl) + b

)
≥ 1− ξl, (8)

ξl ≥ 0, l = 1, . . . , (n+ + n–) . (9)

Where xl are the training vectors and yl ∈ {1,−1} the class
labels. C+ and C– are the false classification penalties for the
positive and negative images, with ξ being the corresponding
slack-variables.

To implement the SVM we use the publicly-available
SVMlight software [17] (with the option to remove inconsistent
training data enabled). Given two input images Ii and Ij and
their corresponding normalized histograms of visual words and
HOG, Si and Sj , this implementation uses the following χ2

radial basis function (RBF) kernel: K(Si, Sj) = exp(−γ ·
χ2(Si, Sj)) [35]. With γ the free kernel parameter.

Thus, γ, C+ and C– are the three parameters that can be
varied. The optimal value for these parameters is obtained by
training the SVM using ten-fold cross validation. Note, we do
not use the groundtruth at any stage of training, but we split
the noisy training images into ten training and validation sets.
I.e. the validation set is a subset of the n+ top text-ranked
images as well as the n− background images. We require a
performance measure for the cross-validation and use precision
at 15% recall, computed on the validation subset of the n+
images (treated as positive) and the n− images (treated as
negative). This parameter selection is performed automatically
for every new object-class.

Sometimes C+ and C– are used to correct unbalanced
training data [23]. In our case, however, the SVM is very
sensitive to these parameters, probably due to the huge amount
of noise in the data, and the optimal value does not directly
correspond to the ratio of positive to negative images.

Finally, the trained SVM is used to re-rank the filtered image
set based on the SVM classification score. The entire image
harvesting algorithm is summarised in figure 7.

4.2 Results for textual/visual image ranking

In this section we evaluate different combinations of training
and testing. If not stated otherwise the text+vision system of

1) Download images and meta-data for new class (e.g. “lion”)
using WebSearch &GoogleImages (section 2).

2) Filter images: remove drawings&symbolic images
(section 2.1).

3) Rank images based on text-attributes using the Bayes classi-
fier (section 3).

4) Train visual SVM classifier on text-ranked images (section 4).
5) Rank all images from 1. (or 2.) using the visual classifier.

Fig. 7. Overview of the text+vision (t+v) image harvesting
algorithm.

figure 7 was used. Results are given in table 4 for various
choices of n+ and n−. For each choice, five different random
selections are made for the sets used in the ten-fold cross-
validation, and mean and standard deviation are reported. The
clear improvement brought by the visual classifier over the
text based ranking for most classes is obvious. Figure 8 and 9
compare the top ranked images from the text and vision steps.

We first investigate how the classification performance is
affected by the choice of n+ and n–. It can be seen that
increasing n– tends to improve performance. It is, however,
difficult to select optimal values for n+ and n– since these
numbers are very class dependent. Table 4 indicates that
using more images in the background class n– tends to
improve performance but there is no real difference between
using 150/1000 and 250/1000 (n+/n−), which perform at
68.4% ± 1.9 and 68.0% ± 2.0 and are thus not significantly
different. All numbers in this section report precision at 15%
recall.

It can be seen (table 4) that HOG alone performs signifi-
cantly worse than the bag of visual words 57.9%±1.8, but the
combination of BOW and HOG improves the overall perfor-
mance to 69.8%± 2.1, compared to BOW alone 68.0%± 2.0.

In order to select the appropriate parameter values we use
cross-validation, where the validation set is part of the n+ and
n− images as described in section 4.1, together with precision
at 15% recall as selection criterion. There are two possible
cases that can occur: (i) a parameter setting that overfits to the
training data. This problem is detected on the validation set,
due to a low precision at 15% recall. (ii) all images (training
and validation set) are classified as background. This leads to
bad, but detectable, performance as well.

Here we describe a slight adjustment to this method, that
ignores “difficult” images. Parameter settings that classify
(almost) all images as fore- or background are not useful,
neither are those that overfit to the training data. We reject
those parameter settings. We then use the “good” parameter
settings to train and classify all images. By looking at the
distribution of SVM responses (over all parameter settings) we
are able to eliminate “intermediate” images, i.e. images that
are not classified as positive or negative images in the majority
of cases. We assume that those images are difficult to classify
and we don’t use those in our model selection step, because we
cannot rely on their class labels being correct due to the noise.
Note that training is still performed on all images, and the
“difficult” images are only discarded during the computation
of the precision at 15% recall during the cross-validation.



8

prec. 15% ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg. std
text 40.61 30.00 70.44 52.22 49.65 61.16 70.27 70.70 82.39 63.18 57.72 53.93 67.94 68.42 54.05 43.81 78.03 48.41 59.05 –

t+v (250/250) 54.0 36.4 64.8 60.9 53.5 78.5 61.9 77.5 86.5 65.4 60.6 53.5 78.2 55.5 56.8 45.7 81.6 96.8 64.9 9.3 (2.5)
t+v (150/500) 59.1 33.8 69.7 63.4 56.8 91.8 61.6 70.7 83.2 67.3 67.0 50.0 77.4 70.4 69.3 59.6 86.3 85.5 67.9 8.3 (2.0)
t+v (250/500) 58.6 35.0 64.6 65.1 47.8 79.0 60.1 75.4 86.9 51.7 68.4 50.2 77.7 69.7 64.3 39.8 90.4 87.9 65.2 8.8 (2.0)
t+v (250/1000) 63.5 32.3 65.9 62.4 51.6 93.0 61.7 80.2 87.8 62.6 71.2 45.5 84.6 69.6 64.9 53.0 86.6 95.8 68.4 7.9 (1.9)
t+v (150/1000) 52.3 39.3 68.6 66.2 57.3 87.9 66.5 78.7 83.8 63.0 57.3 48.6 64.0 72.5 82.9 62.6 93.2 79.8 68.0 7.2 ( 2.0)

t+v (150/1000) C 49.8 42.7 71.0 66.2 55.1 88.8 64.7 78.0 85.7 62.3 49.2 56.2 67.0 72.6 69.8 58.5 88.9 86.1 67.4 8.3 ( 2.1)
HOG t+v 45.1 21.1 53.2 62.0 49.1 80.4 51.6 71.6 78.7 62.9 64.1 43.0 68.2 77.8 47.7 29.8 87.6 48.0 57.9 6.6 ( 1.8)

HOG+BOW t+v 42.8 46.4 70.4 60.9 54.5 93.5 67.7 84.8 88.3 62.5 68.8 55.2 72.1 78.9 80.7 57.3 89.7 81.4 69.8 8.1 ( 2.1)
HOG+BOW t+v C 51.3 42.3 68.2 60.3 63.2 91.1 69.7 78.7 88.7 66.3 70.1 53.9 76.6 90.2 66.1 50.2 92.5 91.7 70.6 7.2 ( 1.7)

gt (150/1000) 83.1 90.8 75.8 76.1 78.0 98.6 78.2 96.0 91.4 88.8 90.2 69.0 95.5 82.7 91.8 94.3 96.1 93.3 87.2 8.4 ( 2.0)
(B) (150/1000) 52.4 12.9 55.4 63.6 54.1 94.9 42.6 47.9 83.7 61.4 52.8 29.8 65.2 53.7 42.9 28.5 82.7 78.3 55.7 6.7 ( 1.7)

TABLE 4
Comparison of precision at 15% recall: ‘text’ refers to text re-ranking alone; ‘t+v’ is text+vision re-ranking using

different training ratios n+/n−; ‘gt’ is groundtruth (only positive images) training of the visual classifier; and (B) is the
baseline, where the visual classifier is trained on n+ = 150 images uniformly sampled from the filtered images of one

class, instead of the text re-ranked images, and n− = 1000 background images as before. The second last column
(avg.) gives the average over all classes. The last column states the mean of the classwise standard deviations over

five runs of cross-validation, as well as the standard deviation of the means over all classes, in parentheses.

This method does not give a significant improvement over
all classes, but improves the performance dramatically for
some classes, e.g. penguin 90.2% ± 5.0 from 78.9% ± 13.2.
This modified version of the cross-validation is denoted ”C”
in table 4.

We next determine how much the performance is affected
by the noise in the training data by training the SVM on
groundtruth positive data, i.e. instead of selecting n+ images
from the text ranked images, we select n+ in-class images
using the groundtruth labelling. We find that the text+vision
system performs well for the classes where the text ranking
performs sufficiently well (see figure 8 and 9 for the top im-
ages returned by the text-ranker). HOG+BOW vs. gt: e.g. car
93.5% ± 7.1 vs. 98.6% ± 1.1, or giraffe 88.3% ± 2.7 vs.
91.4%±4.8. If the text ranking fails the groundtruth performs,
as to be expected, much better than the text-ranked based
training, e.g. for airplane, camel, kangaroo. These experiments
show that the SVM based classifier is relatively insensitive to
noise in the training data, as long as a reasonable noise level
is given.

As a baseline comparison, we investigate performance if
no text re-ranking is used, but the n+ images are sampled
uniformly from the filtered images. If the text re-ranking works
well, and hence provides good training data, then text+vision
improves over the baseline, e.g. elephant 84.8% ± 3.3 vs.
47.9% ± 4.0, penguin 78.9% ± 13.2 vs. 53.7% ± 3.4, or
shark 80.7% ± 4.2 vs. 42.9% ± 14.4. In cases where the
text ranking does not perform well the baseline can even
outperform text+vision. This is due to the fact, that bad text
ranking can provide visually consistent training data, that does
not show the expected class (e.g. for airplanes it contains many
images showing: airplane food, inside airplanes/airports, taken
out of the window of an airplane). However, the uniformly
sampled images still consist of about 35% in-class images
(table 2) and the n– are very unlikely to contain in-class
images.

In addition to re-ranking the filtered images we applied the
text+vision system to all images downloaded for one specific

class, i.e. the drawings&symbolic images were included. It
is interesting to note that the performance is comparable
to the case of filtered images (table 5). This means that
the learnt visual model is strong enough, to remove the
drawings&symbolic images during the ranking process. Thus,
the filtering is only necessary to train the visual classifier and is
not required to rank new images as evident from row two and
three “tf ru” and “tu ru” in table 5. “tf ru” performs almost
as good as “tf rf”, 68.8% ± 1.8 vs. 69.8% ± 2.1, i.e. using
unfiltered images during testing does not affect the perfor-
mance significantly. However, using unfiltered images during
training “tu ru”, decreases the performance significantly down
to 62.4%± 2.5. The main exception here is the airplane class
where training with filtered images is a lot worse than with
unfiltered images. In the case of airplane the filtering removed
91 good images and the overall precision of the filtered images
is quite low 38.67%, which makes the whole process relatively
unstable and can therefore explain the difference.
Discussion: Training and evaluating the system with the goal
to build natural image databases, i.e. treating abstract images
as non-class (6a) in all stages of the algorithm, as opposed to
treating abstract images as in-class, gives similar performance,
however slightly worse. The slight drop in performance can
be explained by the fact that the text-ranker inevitably returns
abstract images which are then used as training images.
That our method is applicable to both those cases is further
supported by the results we retrieve on the Berg et al. dataset
(see section 5.1).

We also investigated alternative visual classifiers, topic mod-
els (see section 5.2), and feature selection. For feature selection
our intention was to find discriminative visual words and then
use these in a Bayesian framework. The discriminative visual
words were obtained based on the likelihood ratio of a visual
word occurring in the foreground to background images [10].
However, probably due to the large variation in both the
foreground and background images, together with the noisy
training data, we weren’t able to match the performance of
the SVM ranker.
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airplane: text-ranker

airplane: HOG+BOW t+v

bikes: text-ranker

bikes: HOG+BOW t+v

car: text-ranker

car: HOG+BOW t+v

giraffe: text-ranker

giraffe: HOG+BOW t+v

Fig. 8. Comparing top ranked 36 images using the text-ranker, and the full system. Red boxes indicate false positives.
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penguin: text-ranker

penguin: HOG+BOW t+v

tiger: text-ranker

tiger: HOG+BOW t+v

wristwatch: text-ranker

wristwatch: HOG+BOW t+v

zebra: text-ranker

zebra: HOG+BOW t+v

Fig. 9. Comparing top ranked 36 images using the text-ranker, and the full system. Red boxes indicate false positives.
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prec. 15& ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg. std.

tf rf 42.8 46.4 70.4 60.9 54.5 93.5 67.7 84.8 88.3 62.5 68.8 55.2 72.1 78.9 80.7 57.3 89.7 81.4 69.8 8.1 ( 2.1)
tf ru 38.7 39.0 68.7 62.3 55.5 93.4 63.6 81.8 84.4 64.3 68.9 53.0 74.7 80.0 79.1 58.2 92.5 80.2 68.8 6.6 ( 1.8)
tu ru 49.9 32.1 61.4 64.1 55.1 82.0 63.9 62.2 90.1 46.6 41.6 49.3 78.8 80.6 62.0 34.7 91.4 78.2 62.4 9.2 ( 2.5)

tf rf (B) 52.4 12.9 55.4 63.6 54.1 94.9 42.6 47.9 83.7 61.4 52.8 29.8 65.2 53.7 42.9 28.5 82.7 78.3 55.7 6.7 ( 1.7)

TABLE 5
Comparing filtered vs. non-filtered images and baseline: tf and (tu) denote training on filtered (unfiltered) images; rf
and (ru) ranking on filtered (unfiltered) images; The first row gives the results for the whole system (HOG+BOW (t+v)

in table 4). The second row shows the case where all images were re-ranked, including the ones that were filtered
out in section 2.1. The third row shows training and ranking on unfiltered images. Last row gives results for the

baseline (B) method where the visual classifier was trained on images selected from the initial database of that class,
i.e. no text ranking applied, and tested on unfiltered images. The last column states the mean of the classwise

standard deviations over five runs of cross-validation, as well as the standard deviation of the means over all classes,
in parantheses.
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Google image search ours (BOW) ours (HOG+BOW)

Fig. 10. Comparison with Google image search. Preci-
sion at 100 image recall. Compare to highlighted versions
in first column of table 4 for our algorithm.

We found that combining the vision and text ranked lists
using Borda count [1] or similar methods gave a slight im-
provement on average, but results were very class dependent.
Combining the probabilistic outputs of text and SVM as in [34]
remains an interesting addition for future work. The advantage
of our system is that, once trained, we can rank images for
which no meta-data is available, e.g. the Fergus and Berg
images, see next section.

5 COMPARISON WITH OTHER WORK & METH-
ODS

We compare our algorithm with three other approaches. We
report the results for n+ = 150, n− = 1000 and HOG+BOW
(see highlighted versions in first column of table 4 ). Again we
report mean and standard deviation over five runs of ten-fold
cross-validation.

5.1 Comparing with other results
Comparison with Google image search:

Here we re-rank the images downloaded with
GoogleImages with our fully automatic system, i.e. text-
based training of visual classifier followed by visual
re-ranking of GoogleImages. Comparative results between
our approach and GoogleImages are shown in figure 10.

airplane guitar leopard motorbike wristwatch
our 58.5± 25.8 70.0± 3.9 49.6± 9.9 74.8± 7.3 98.1± 3.0

our (6ok) 41.8± 18.4 31.7± 4.1 22.6± 10.2 50.5± 8.0 94.4± 3.2

[12] ( 6ok) 57 50 59 71 88
Google (6ok) 50 30 41 46 70

Fritz [14] 100 91 65 97 100

TABLE 6
Comparison with Fergus et al. [12] data: Average

precision at 15% recall with one standard deviation. The
images are from Google image search and were

provided by the author. (6ok) uses the same annotation
as [12]. The first row of the table treats Fergus’ ok class

as in-class, unlike [12].

As can be observed, our approach achieves higher average
precision for 16 out of 18 classes with only airplane and
boat being outperformed by the Google results. Those are
cases where our text ranker doesn’t perform that well, which
increases the noise in the training data and thus explains the
decreased visual performance.

Images for the class penguin returned from both Google and
our re-ranking (using the learnt visual classifier applied to the
Google images) are shown in figure 11.
Comparison on Fergus et al. [12] data:

In this experiment we re-rank the Google images provided
by [12]. In order to do so we train on the downloaded images
and their corresponding meta-data. We downloaded “leopard”
in addition to the previously described classes. It is difficult to
directly compare results in [12] to our text+vision algorithm,
as [12] treats ok images as non-class, whereas our system is
not tuned to distinguish good from ok images. Due to this
our system performs slightly worse than [12], when measured
only on good images. However, it still outperforms Google
image search on most classes even in this case. The same
holds for the comparison with [14], who perform very well
on this dataset. Table 6 also shows (first row) the results
when ok images from the [12] data are treated as in-class.
As expected the performance increases significantly for all
classes. It needs to be noted that this dataset is relatively small
and the distribution of images is not always diverse (e.g. many
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returned by Google image search

re-ranking Google images using our visual re-ranking

Fig. 11. Re-ranking Google images. The 40 top-ranked penguin images returned by Google image search (in their
original order), as well as the 40 top-ranked images after re-ranking Google images using our visual (only) ranking.
Red boxes indicate false positives. Google image search returns 14 non-class images (false positives), to be compared
to the 6 returned by our system.
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Berg  et al. ours (HOG+BOW)

Fig. 12. Comparison with Berg et al . [5]. Precision at
100-image recall level for the 10 animal classes made
available by the authors of [5]. Note that our automatic
algorithm is superior in many cases, even though the
method of [5] involves manual intervention.

close duplicates in the airplane category).
Comparison with Berg et al. [5]: Here we run our visual
ranking system on the dataset provided by [5]. In order to do so
we downloaded an additional set of six classes (alligator, ant,
bear, frog, leopard, monkey) for which no manual annotation
was obtained. In our experiments we only use the test images
from [5] for testing and training is performed on our down-
loaded images and the corresponding meta-data. Figure 12
compares the results reported in [5] to re-ranking of the test
images available from [3] using our visual classifier. Note that
we are training on our set of images which might stem from a
different distribution than the Berg test set. We compare with
the “classification on test data” category of [5], not to their
“final dataset” which includes groundtruth from their manual
step. Their provided groundtruth, which treats abstract images
as non-class, was used. Note that our automatic algorithm
produces results comparable or superior to those of Berg et

al., although their algorithm requires manual intervention.

5.2 Comparison with topic models

Here we compare our SVM based model to three widely
used topic models (pLSA ([12],[16]), LDA [6], and HDP
[30]). The underlying idea of all three topic models is to
model each image as a distribution over topics, whereby
each topic is a distribution over textons. Probabilistic Latent
Semantic Analysis (pLSA) [16] models each entity (image)
as a mixture of topics. Using the common notation for pLSA
we have P (w|d) =

∑
z P (w|z)P (z|d). In our case w are the

visual words (described in section 4), d are the images and
z are the classes (see figure 13). LDA [6] and HDP [30] are
“probabilistic” extensions of pLSA, and HDPs model the data
using hierarchical Dirichlet processes and avoid the need to
explicitly specify the number of desired topics.

Given a set of topics and the test images ranked by their
topic likelihood the question is how to select the “right” topic
which induces the final ranking. This problem of selecting the
right topic is difficult and there exist various approaches (see
for example [11]). To give an idea of the performance of the
topic models we avoid this topic selection stage and select the
best topic based on groundtruth. The topic that gives the best
15% recall on the images evaluated on groundtruth is selected.
This gives a huge advantage to the topic models in table 7,
as groundtruth is used during testing. Each of these models
is trained on all images that we want to rank later on. This
results in a ranking of all images for each topic (number of
topics specified for pLSA and LDA and learned for HDP).
Discussion: The best performing topic models are the pLSA
with 500 topics 68.7% ± 1.0 closely followed by the HDP
68.6%± 0.7 which uses an average of 257 topics. Our SVM
based system performs similarly well with 68.0%±2.0 without
using groundtruth for model selection. There is also no single
topic model that consistently outperforms the SVM on the
majority of classes. As mentioned before the results reported
for the topic models use groundtruth to select the best topic,
and thus give an unfair advantage to topic models, but they also
give evidence to the conclusion that the SVM is the “stronger”
classifier. It could be possible to combine the high ranked
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prec. 15% ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg. std

t+v (150/1000) 52.3 39.3 68.6 66.2 57.3 87.9 66.5 78.7 83.8 63.0 57.3 48.6 64.0 72.5 82.9 62.6 93.2 79.8 68.0 7.2 ( 2.0)

pLSA(5) 71.2 23.4 70.2 61.9 49.6 85.7 60.0 59.9 78.2 56.7 56.3 38.2 64.5 53.4 55.7 47.0 67.2 63.6 59.0 4.4 ( 1.1)
pLSA(10) 70.3 21.4 69.0 59.3 53.2 84.2 66.2 61.3 78.0 63.9 65.0 45.4 61.5 62.3 65.6 52.3 74.8 74.6 62.7 5.5 ( 1.4)
pLSA(50) 74.8 36.7 74.2 62.2 56.5 87.3 65.5 65.6 81.0 66.4 71.5 59.9 71.8 73.2 62.4 54.5 82.9 81.5 68.2 3.8 ( 0.9)
pLSA(100) 73.7 38.2 73.8 63.1 56.1 88.9 66.4 63.7 80.2 67.0 72.3 57.5 71.7 72.7 65.7 55.5 85.4 78.6 68.4 3.9 ( 0.9)
pLSA(200) 76.1 34.6 70.9 60.2 55.8 88.7 65.8 62.6 81.8 67.6 67.8 55.2 71.6 73.9 61.9 57.5 86.1 81.0 68.4 3.7 ( 0.9)
pLSA(500) 76.0 37.5 68.3 61.6 54.4 88.3 66.9 63.5 81.5 65.2 68.2 55.0 73.0 69.6 63.6 64.6 86.2 88.4 68.7 3.7 ( 1.0)

LDA(5) 70.6 22.4 65.9 60.9 46.0 84.2 62.0 55.8 77.9 57.3 55.7 42.7 63.7 54.2 52.9 52.9 72.5 59.8 58.7 4.5 ( 1.2)
LDA(10) 68.9 22.7 70.0 59.0 47.2 82.6 63.9 60.5 80.7 65.5 59.9 54.7 62.3 61.1 54.2 62.5 78.3 66.5 62.2 4.6 ( 1.1)
LDA(50) 72.4 37.8 74.3 64.4 56.8 89.3 64.1 63.8 83.6 66.7 66.6 62.6 69.7 68.7 50.3 60.5 86.3 82.6 67.8 3.7 ( 0.9)
LDA(100) 74.5 36.6 74.5 63.2 56.2 85.9 62.9 62.0 83.6 66.1 65.8 62.5 70.5 71.3 53.9 62.0 86.1 80.9 67.7 3.5 ( 0.9)
LDA(200) 72.9 38.9 69.7 65.1 57.1 86.7 61.5 59.4 82.9 65.4 63.8 61.3 72.2 68.9 48.4 60.8 86.0 83.8 66.9 2.8 ( 0.7)
LDA(500) 74.3 42.2 65.3 62.7 51.6 85.3 61.7 59.5 79.1 66.2 64.2 60.4 72.0 65.5 45.9 58.8 83.0 84.6 65.7 3.0 ( 0.7)

HDP 71.2 33.6 76.2 61.7 53.5 86.1 71.7 76.6 81.8 64.8 70.2 60.8 72.6 74.3 55.0 60.2 83.6 80.5 68.6 2.9 ( 0.7)

TABLE 7
SVM vs. topic models: Given are the results as in table 4 (i.e. 15% recall) for all object classes. We compare the best
result achieved, using BOW only, by the SVM model to the performance achieved by using topic models (pLSA, LDA,
HDP) where the best topic is selected using groundtruth. This gives the topic models a huge advantage, despite this
the topic models don’t clearly outperform the fully automatic SVM model. HDP used an average of 257 topics. The

last column states the mean of the classwise standard deviations over 10 runs of training the topic models, as well as
the standard deviation of the means over all classes, in parantheses.

=

d z d

P(w|z)P(w|d)

P(z|d)

zww

Fig. 13. pLSA models word frequencies in a document
P (w|d) as topics in a document P (z|d) given the word
distribution for a topic P (w|z). pLSA then minimizes this
equation with respect to KL-Divergence.

images from two topics, and thereby improve the ranking,
although there is no straight forward method to do this.

6 CONCLUSION

This paper has proposed an automatic algorithm for harvesting
the web and gathering hundreds of images of a given query
class. Thorough quantitative evaluation has shown that the
proposed algorithm performs similarly to state of the art
systems such as [12], while outperforming both the widely
used Google Image Search and recent techniques which rely
on manual intervention [5].

Polysemy and diffuseness, are problems that are difficult
to handle. This paper improves our understanding of the
polysemy problem in its different forms. Interesting future
direction could build on top of this understanding as well as the
ideas in [26] and leverage multi-modal visual models to extract
the different clusters of polysemous meanings, i.e. for tiger:
Tiger Woods, the animal. It would also be interesting to divide
diffuse categories described by the word airplane (airports,
airplane interior, airplane food) into smaller visually distinctive
categories. Recent work [26] addresses the polysemy problem
directly and a combination with our work would be interesting.

Our algorithm does not rely on the high precision of top
returned images e.g. from Google Image Search. Such images
play a crucial role in [12, 19], and future work could take
advantage of this precision by exploiting them as a validation
set or by using them directly instead of the text based ranker
to bootstrap the visual training.

There is a slight bias towards returning “simple” images,
i.e. images where the objects constitute large parts of the
image and are clearly recognizable. This is the case for
object categories like car or wristwatch where an abundance
of such images occurs in the top text-ranked images. For
other object classes more difficult images are returned as well,
e.g. elephant. The aim to return a more diverse set of images
would require additional measures (see for example [19]).
Although some classification methods might require difficult
images, [27] gives an example of how a car model can be
learnt from these images. This automatically learnt model is
able to segment cars in unseen images.
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