
Semantic Image Segmentation
and

Web-Supervised Visual Learning

D.Phil Thesis

Robotics Research Group
Department of Engineering Science

University of Oxford

Supervisors:
Professor Andrew Zisserman

Dr. Antonio Criminisi

Florian Schroff
St. Anne’s College

Trinity, 2009

Florian Schroff Doctor of Philosophy
St. Anne’s College Trinity Term 2009

Semantic Image Segmentation
and

Web-Supervised Visual Learning

Abstract

Given an image, the goal of this work is to recognise objects of certain categories despite
intra-class appearance variations and small inter-class differences. The appearance of objects in
photographs is influenced by lighting, scale, different poses, viewpoints, articulation of objects,
clutter and occlusion. Two different aspects of object recognition are investigated in this thesis.
The first part develops models for semantic object segmentation of natural images and relies
on groundtruth labelling for training. The second part uses the implicit supervision that is
available on web-pages to learn visual object-class models automatically. It can then provide
training data for object detection or segmentation algorithms.

The goal in the first part is to label connected regions in an image as belonging to specific
object classes, such as grass or cow. We introduce a compact model, where each class is mod-
elled by a single histogram of visual-words, this is in contrast to common nearest-neighbour
approaches which model each class by storing exemplar histograms. After introducing segmen-
tation algorithms based on these histogram models we extend the Random Forest classifier and
evaluate its feature selection properties for the semantic object segmentation task.

Most object recognition methods rely on labelled training images. For each object category
to be recognised, the system is trained on a set of images containing instances of these categories.
The second part of this thesis focuses on the automatic creation of sets of images that contain
a certain object class. The idea is to download an initial set of images from the Internet based
on a search query (e.g. penguin). Given the images a text based ranking that exploits the
information on the web-pages is performed. This ranking is then used to automatically learn
visual models for object categories. We compare the performance of our system to previous
work and show that it performs equally well without the need of explicit manual supervision.

This thesis is submitted to the Department of Engineering Science, University of Oxford,
in fulfilment of the requirements for the degree of Doctor of Philosophy. This thesis is entirely
my own work, and except where otherwise stated, describes my own research.

Florian Schroff, St. Anne’s College

Copyright c©2009
Florian Schroff

All Rights Reserved

Acknowledgements

I would like to thank my supervisor Professor Andrew Zisserman and my co-supervisor
Dr. Antonio Criminisi. Without their support, guidance and encouragement this work would
not have been possible. I would also like to thank Microsoft Research for supporting me with
the European PhD scholarship program, which allowed me to work on my research and to
present my work at international conferences.

I thank Professor Hans-Helmut Nagel for sparking my interest in computer vision during
my diploma thesis and for supporting me to achieve my goals.

Specifically, I would like to mention my long-term lab colleagues Maria-Elena Nilsback,
Mukta Prasad, James Philbin and Patrick Bühler, for being helpful colleagues, friends and
entertaining travel buddies. But I am thanking everyone in the Vision Lab for creating a friendly
working environment and for the fruitful discussions and relaxing tea breaks. I would also like to
thank my college mates and all the new friends I have made in Oxford for interesting discussions
and distraction from the sometimes busy work schedule. I am grateful to Maya Ganapathy,
Amreeta Mathai, Matthew Blaschko, András Salamon and Michele Taroni for proofreading
parts of this thesis and/or inspiring me in other ways.

Finally, I would like to thank my parents and brothers for their support, understanding and
for always being there.

Contents

1 Introduction 1
1.1 Challenges . 2
1.2 Problem Statement . 6
1.3 Thesis Outline . 10

2 Literature & Methods 12
2.1 Low-Level Features and Object-Class Models . 12

2.1.1 Image and Region Description . 13
2.1.2 Visual Object-Class Models . 23
2.1.3 Summary . 30

2.2 Classifiers and Generative Models . 30
2.2.1 Support Vector Machines . 31
2.2.2 Random Forest Classifier . 32
2.2.3 Topic Models . 40
2.2.4 Energy Minimisation for Multi-Label Image Segmentation 42

2.3 Object Recognition . 44
2.4 Segmenting Images into Object Regions . 45
2.5 Conclusion . 48

3 Object Segmentation Datasets 50
3.1 MSRC Datasets . 50
3.2 Pascal Visual Object-Class Dataset . 53
3.3 Performance Measures . 56

3.3.1 Region-Level Classification . 57
3.3.2 Pixelwise Classification . 57
3.3.3 Average Class Performance . 57
3.3.4 Average Precision . 58

3.4 Summary . 58

4 Semantic Segmentation via Texton Models 60
4.1 Texton Based Segmentation Algorithm . 61

4.1.1 Texton Histogram Models . 61
4.1.2 Context Regions for Histogram based Classification 62
4.1.3 Classification . 63

4.2 Single-Histogram Class Models . 64
4.2.1 Learning the Single-Histogram Class Models 65
4.2.2 Results: Region-Level Classification . 68

4.3 Object Segmentation Results and Comparative Evaluation 69
4.3.1 The Effect of the Window and Vocabulary Size 70
4.3.2 Influence of Methods to Build the Texton Vocabulary 71
4.3.3 Keeping all Exemplar Histograms vs. Single-Histogram Class Models . . 72

CONTENTS vi

4.3.4 Discussion . 75
4.4 Modelling Test Regions as a Mixture of Classes 77

4.4.1 Two-Class Mixture Model . 77
4.4.2 Multi-Class Mixture Model . 79
4.4.3 Evaluation of the Two-Class Mixture Model 80
4.4.4 Exploiting the Mixture Model . 82
4.4.5 Discussion . 84

4.5 Pixel Context based on Bottom-Up Segmentations 86
4.5.1 Introduction to Bottom-Up Segmentation 86
4.5.2 Combining Multiple Segmentations . 87
4.5.3 Experimental Evaluation . 88
4.5.4 Discussion . 90

4.6 Conclusion . 91

5 Semantic Segmentation via a Discriminative Model 93
5.1 Random Forests for Object Segmentation . 94

5.1.1 A General Node-Test . 94
5.2 Generalising Single-Histogram Class Models in Random Forests 97

5.2.1 Casting the Nearest Neighbour Classifier into Decision-Tree Terminology 97
5.3 Relationship of Various Feature Types . 100
5.4 Parameter Evaluation and Segmentation Results 103

5.4.1 Spatial Context: Offset and Windowsize 104
5.4.2 Number of Decision-Trees and “Randomness” 105
5.4.3 Combining Low-Level Feature Types . 106
5.4.4 Full System with CRF . 108

5.5 Conclusion . 113

6 Harvesting Images from the Web 114
6.1 Related Work . 115
6.2 The Datasets . 117

6.2.1 Data Collection . 117
6.2.2 Groundtruth Annotation . 119

6.3 Filtering Drawings & Abstract Images . 120
6.3.1 Learning the Filter . 121

6.4 Ranking on Textual Features . 123
6.4.1 Image Ranking . 123
6.4.2 Text Ranking Results . 126

6.5 Ranking on Visual Features . 130
6.5.1 Visual Features . 130
6.5.2 Training the Visual Classifier . 131

6.6 Results for Textual/Visual Image Ranking . 132
6.6.1 Discussion . 136

6.7 Comparison with Other Work & Methods . 141
6.7.1 Comparing with Other Work . 141
6.7.2 Topic Models . 144

6.8 Conclusion . 147

CONTENTS vii

7 Conclusion 150
7.1 Using Harvested Images for Segmentation . 150
7.2 Future Work . 153

7.2.1 Object Segmentation . 154
7.2.2 More Harvesting . 156

8 Appendix 158
8.1 Single-Histogram Class Models . 158

8.1.1 Derivation of Single-Histogram Class Models 158
8.1.2 Histogram Mixture Model . 160

8.2 Statistics . 161
8.2.1 Code Statistics . 161
8.2.2 Job Statistics . 163

Bibliography viii

Index xxi

Chapter 1

Introduction

Nowadays there are numerous digital images that are readily available. The number of images

on mobile phones, personal image collections on the computer or online photo albums such as

Google’s Picasa greatly increased over the past years due to the abundance of digital consumer

cameras. In addition to the increasing number of images on web-pages there is a dramatic

increase of image sharing sites such as Flickr. In order to take advantage of all these images,

advanced visual content recognition techniques become more and more important. Systems

that are able to provide high-level information about the objects contained in the images can

provide immediate advances. Starting with the wish for a more reliable web image search to

tools for handling personal image collections, there is an abundance of possible applications.

One might want to automatically build a list of all objects and people that are shown in personal

collections. The possibility to search for all images of one person, given a query image or name,

as well as grouping images by location are examples of useful applications. Computer vision

methods and object recognition specifically, can help to cope with the increasing size of personal

image collections. In addition, there is a wide range of industrial applications such as driver

assistant systems or quality control.

One important goal in image analysis is to label the objects that occur in natural images.

Research in this area started over 40 years ago. Roberts (1965) describes how simple objects

in an image can be transformed into a 3D line representation. Since then visual image analysis

as well as object recognition were subject to research by many people. Taking this amount of

past research and the current state of the field into account, it is unlikely that performance

comparable to humans can be achieved in the near future. Humans are estimated to distinguish

1.1 Challenges 2

(a) (b)

Figure 1.1: Context plays an important role for humans in object detection. The image (a)
taken from Oliva and Torralba (2007) shows a car on the street and the same shape rotated by
90◦, which then appears to be a pedestrian. (b) gives an example where “context” or expected
observations contradict the image objects.

about 30,000 classes [Norman (2002)]. Although current systems seem to be far away from

matching human recognition abilities, computers are already able to exceed human performance

when it comes to large scale tasks, e.g . searching millions of images on the Internet. Many of

these tasks have in common that the cost of error is not very high. Applications in robotics

or driver assistant systems on the other hand often require a very high reliability as errors can

lead to fatal accidents.

This thesis focuses on the task of finding images that contain certain object-classes and on

automatically segmenting those objects in images. The next section gives an overview of the

challenges that are encountered. It is followed by a more specific problem statement and an

outline of the thesis.

1.1 Challenges

In contrast to what one might infer from their own ability to solve the object-detection task in

fractions of seconds and with a very small error rate, there exists a wide range of difficulties

that need to be overcome by an automatic system, and that are handled very well by humans.

There is a range of possible variations of object appearances especially in natural images

1.1 Challenges 3

(a) (b)

(c) (d)

Figure 1.2: Appearance variations of penguins. (a) different size of baby penguins and
grown-ups. (b) different aspect, lighting condition and pose. (c) different scale of same sized
penguins due to projective transformation. (d) background clutter and unusual aspects.

and humans often use the context of the image to decide about the specifics of the object-classes

contained in an image. Figure 1.1(a) illustrates how important context can be to distinguish

similar looking shapes. In Figure 1.2(d) only the presence of the clearly recognisable penguin

allows to infer that the other “dark” objects under water might be penguins as well. Generally

context can be helpful to resolve ambiguous cases as for example in Figure 1.3(b) and Fig-

ure 1.5(a) where the presence of clearly recognisable objects resolves possible confusion with

other object-classes, sheep and birds in this case. If objects can be recognised without ambiguity

it is less important to take context into account, in fact, disregarding context allows recognition

despite apparent contradictions with expected observations as in Figure 1.1(b). This section

gives an idea of the main challenges that arise during the object recognition task and can lead

to such ambiguities. The appearance variations of objects can be divided into two main classes:

• Object variations stemming from the object itself such as articulation, pose and size,

which affect the intra-class variations directly, but can also influence the inter-class dif-

ferences.

• Image variations such as lighting conditions, scale, viewpoint, background clutter.

1.1 Challenges 4

(a) (b)

Figure 1.3: Intra-Class variations. Each image shows instances of the same object-class,
but with very different appearances.

Figure 1.4: Object-class by functionality. Some object-classes are defined by functionality
rather than by visual similarity.

Both of these classes will be discussed in detail in the following.

Object Variations

• Intra-class variation describes the variation that occurs between objects belonging to the

same class (e.g . different breeds of dogs in Figure 1.3). There are many categories which

have large intra-class variations and therefore complicate the automatic categorisation of

those objects into the same class. One of the problems is that what we commonly describe

as object-categories is often based on functionality rather than appearance (e.g . chairs,

see Figure 1.4). In order to being able to distinguish objects based on functionality a

vast body of knowledge about the world needs to be taken into account in addition to

the image context and the visual appearance of the object itself.

1.1 Challenges 5

(a) (b) (c) (d)

Figure 1.5: Inter-Class variations. Some of the objects in (a) airplanes, and (b) birds, have
a similar appearance and only the context enables us to be certain about which object-class
they belong to. (c,d) are two examples of similar appearances of a camel and a horse with only
very few distinguishing features.

• Inter-class variation refers to variation that occurs between objects of different classes.

Due to the fact that there are many object-classes with relatively little appearance vari-

ation between them, it is challenging not to confuse those classes (for example sheep

and white calves in Figure 1.3(b)). Figure 1.5 shows further examples of little inter-class

variation and the confusion is partly resolved by taking the context into account.

Conditions that affect inter- and intra-class variation

• Articulation describes the variation of appearance caused by different positions of parts

of the object relative to each other. It mostly refers to living objects (e.g . humans:

different arm positions, sitting, running, standing, kneeing), but also applies to other

object classes (e.g . diggers, trucks, closed or open laptops). For parts-based models this

requires to explicitly take deformation into account, other object-class models which do

not model the positioning of parts relative to each other implicitly allow for more shape

variation at the expense of less discrimination between object-classes.

• Objects occur in different poses and can have completely different appearances as a result.

As an example, standing or swimming penguins in Figure 1.2(b,d).

• The size of objects can significantly influence the similarity to other object-classes and

increase the variance within one object-class. There are, for example, penguins in many

different sizes, which together with other variations can cause confusion with other bird

species (Figure 1.2(a)).

1.2 Problem Statement 6

Image Variations

• Lighting conditions have a major influence on the appearance of objects. Due to different

lighting and the occurrence of shadows objects can appear completely different, or are

generally difficult to recognise in the first place, even for humans. Figure 1.3 on page 4

shows how strong shadows can add to background-clutter and even if it does not directly

affect the objects’ appearances it will still add strong gradient edges to the image, which

leads to confusion for many computer vision methods.

• Scale variations can directly be caused by the imaging device or can be due to perspective

transformation (Figure 1.2(c)). The example given in Figure 1.5(a,b) also illustrates the

confusion that can occur due to these scale issues and the related differences in level of

detail.

• The aspect (viewpoint) can significantly change the appearance of an object. Aspect

refers to position of the camera relative to the object. For example, the frontal view of a

penguin versus a penguin seen from below or above under water (Figure 1.2(b) and (d)).

• Clutter can result in confusion between foreground objects and background. Object

features are more likely to occur in the background thereby producing false matches and

wrong evidence about the presence of objects.

• Occlusion is mostly caused by other objects or truncation by the image border. Self

occlusion describes the situation where parts of the object occlude other parts of the

same object. All these cases complicate the recognition task significantly as the visual

model either needs to explicitly model the possibility of missing parts or needs to be

sufficiently robust to it. Figure 1.3(b) gives an example where objects of the same type

occlude each other. Figure 1.6(b) shows various occlusions between instances of different

object-classes (motorbike, bus, car). These cases are challenging even for humans.

1.2 Problem Statement

Object recognition distinguishes between the detection of specific object instances in different

views and images and the detection of object-classes. Object instance detection has already

1.2 Problem Statement 7

advanced very far and current systems can solve tasks such as searching millions of images

on Flickr [Philbin et al. (2008), Jegou et al. (2008)] or searching specific objects in videos

[Sivic and Zisserman (2006)]. Object-class recognition, on the other hand, needs to cope with

additional challenges as pointed out in Section 1.1, namely intra- and inter-class variations.

Current state of the art object recognition systems tackle problems with 20 object-classes [Ev-

eringham et al. (2008)] in difficult real world images and 256 object-classes [Griffin et al. (2007)]

on simpler images, and are far from human abilities in terms of number of object-classes and

recognition accuracy.

An ultimate goal might be a pixel or sub-pixel labelling of an image – an image parser that

would not only assign the image pixels to specific objects, but provide a complete description of

the image content including a description of object parts, as well as their relations and relative

positions [Storkey and Williams (2002), Jin and Geman (2006), Zhu et al. (2007)]. Ideally one

would have a smooth transition from the identification of specific object instances in different

images to recognising object-classes. In this thesis we concentrate on the task of finding images

containing specific object-classes or assessing the presence of objects. The definition of object-

class is somewhat vague in the community and it is undoubtedly the case that in the long term

one would prefer to use a hierarchical representation. For example, a dalmatian would also

be labelled as a dog and an animal. In addition the object’s parts such as legs, ears, or head

should be labelled as well. Other work such as Liu et al. (2007), for example, focuses on finding

generic salient objects in images instead of aiming to recognise objects from a pre-specified list

of classes.

The most basic task in this direction would be to decide if a specified object is present in

an image or not. This is often referred to as image classification. The localisation of objects in

images is commonly called object detection. This has to be distinguished from object segmenta-

tion which does not only detect the position of the object but also returns its extension. I.e. the

image is segmented into regions with each region corresponding to a specific object or object-

class. Figure 1.6 gives examples for both these cases. Object recognition can be divided into

these more specific sub-tasks, which are commonly defined as follows [Everingham et al. (2008)]:

Image classification. A given image is labelled based on its content. In the simplest case this

just denotes if a certain object is present in the image or not (e.g . bus in the top right image in

1.2 Problem Statement 8

(a) (b)

(c) (d)

Figure 1.6: Detection vs. segmentation. The figure illustrates the difference between
object detection (a,b) and object segmentation (c,d) on example images from the Visual Object
Classes Challenges [Everingham et al. (2007, 2008)].

Figure 1.6). This is also called object classification. Alternatively the system could also return

a list of the main objects occurring in the image, or perform a scene classification of the image,

for example outdoor meadow, street scene, or indoor living-room, for the images in Figure 1.6.

Related to this is region classification where a given region is considered and classified. Often

this method together with the restriction that each region contains one object-class only is used

to simplify the classification task and evaluate algorithms on a simpler task.

Solving this problem can specifically contribute to the improvement of image search engines,

such as Google image search for example. In Chapter 6, we perform image or object classifica-

tion, i.e. decide if there are objects belonging to a specified object-class present in the image

or not. We use this to re-rank images downloaded from the Internet, or returned by Google

image search. Other applications include video search, e.g . searching the thousands of hours

on YouTube or news archives for the occurrences of specific objects, in order to trim down the

incredible amount of data and simplify video browsing for humans.

1.2 Problem Statement 9

Object detection. Given an input image the goal is an output similar to the bounding

boxes shown in Figure 1.6, i.e. the areas where objects belonging to a set of pre-specified

object-classes occur should be marked and labelled with the corresponding class. One could

also expect the algorithm to give a more specific description such as the orientation (rear,

front, left or right) and if the object is truncated or occluded. In the Visual Object Challenge

(VOC) datasets, however, this is currently only used for training purposes. Solving this task

would also induce a solution to the previous problem, image classification. It is, however, much

more difficult to build an object-detection system than an image classification system and the

run-time complexities are usually increased as well. Consequently, it is usually advantageous

to focus on image classification if that is the problem one is interested in.

Solutions to the detection problem have possible applications in robotics, where robots need

to detect objects to avoid or interact with them. Related is the application of driver assistance

in cars. Those systems should be able to detect cars or pedestrians in order to avoid collisions by

issuing warnings to the driver, for example. Face detection is an example that was successfully

transferred into many consumer cameras where it supports the auto-focus system to keep all

faces in the picture in focus.

Object segmentation. This is a simpler version of the general labelling problem where a

parse tree for all structures in the image down to the pixel or sub-pixel level is returned. Object

segmentation is more general than object detection and image classification in the sense that

they both can be derived from object segmentation results. It needs to be pointed out that in

general objects also include categories like grass, sky, or water that can extend “indefinitely”.

They are sometimes referred to as “stuff” categories. A complete segmentation system would

label those “objects” as well. Chapter 4 and Chapter 5 investigate various methods to retrieve

the segmentation of an image into constituent object regions for a set of pre-specified object-

classes. Figure 1.6 shows an indoor scene and an image segmentation into the object regions

corresponding to the object-classes TV-monitor, potted-plant, and sofa.

Some of the possible applications are related to image or video editing, where instead of

interactive approaches such as Rother et al. (2004) further automation can be imagined. Good

automatic segmentations of objects can allow automatic replacement of the background, similar

to Yin et al. (2007), but more general and based on a specified set of object-classes. Reliable

1.3 Thesis Outline 10

automatic object segmentation can also help to anonymise publicly available image or video

data. The images available in Google’s street view could be further anonymised by removing

cars or people in addition to blurring faces and number plates as it is done already.

1.3 Thesis Outline

We give an overview of related literature and relevant methods in Chapter 2, where we in-

troduce standard methods for image description and provide a comprehensive overview of the

machine learning tools used throughout this thesis. Chapter 3 introduces the image datasets

and performance measures that are used to evaluate our proposed methods.

The main part addresses two different aspects of object recognition. First, in Chapter 4 and

Chapter 5, we investigate various methods to classify pixels based on their local image context,

image or object segmentation. In the current setup, this requires strong supervision during

training. Complementary to that, we provide a system to learn visual object-class models for

image classification based on no explicit supervision in Chapter 6. We exploit the vast amount

of data that is available on the Internet to provide the supervision that is necessary for the

training of a visual-model. This can then provide supervision for the segmentation system and

reduce or eliminate the amount of manually labelled training data that is necessary for training.

Chapter 7 concludes and summarises our observations. We also show preliminary results

on how the harvested images can be used to train our segmentation system. We then presents

ideas for future research. The following two paragraphs summarise the two main aspects of

this thesis.

Object segmentation. The first part (Chapter 4 and Chapter 5) addresses the problem of

pixelwise image segmentation. Parts of this work were published in Schroff et al. (2006, 2008).

Our approach classifies each pixel in the image by taking its local context into account. In

Chapter 4, we introduce a compact model for object-classes that uses local context in the form of

a fixed sliding-window. Due to the compact representation the computational requirements are

drastically reduced in comparison to standard nearest neighbour methods. We then investigate

the use of a purely image content driven bottom-up segmentation (i.e. colour, texture, or

gradient) in order to define the context of a pixel and show how it improves the segmentation.

1.3 Thesis Outline 11

In Chapter 5, we employ the Random Forest framework to learn the context of pixels

discriminatively and improve significantly over the simpler histogram based models with “fixed”

pixel context. In addition to this context the classifier also selects the types of low-level features

that are most discriminative.

Harvesting image datasets from the web. For current object recognition research good

training and test sets are crucial and often need to contain labelled image data which are very

time consuming to construct manually. Image search engines apparently provide an effortless

route, but currently are limited by poor precision of the returned images and restrictions on

the total number of images provided. For example, with Google Image Search the precision is

as low as 32% on one of the classes tested here (shark), averages at 39%, and downloads are

restricted to 1000 images1. Flickr also provides millions of images together with user defined

tags that describe the image contents. Even though a vast number of images are available on

the net, it is not straight forward to retrieve a set of images belonging to one specific object

category.

Following Berg and Forsyth (2006) we use a web search engine to obtain a large pool of

images and the web pages that contain them, for a specified object-class. The low precision of

such an initial pool of images does not allow us to learn a visual class model from such images

directly. Our system is based on the work presented in Schroff et al. (2007). An initial filtering

step aims to remove images such as drawings, cartoons and sketches. Then we apply a class

independent Bayes classifier that ranks each image based on textual attributes. The final step

builds on top of the text ranker and uses its output to learn a visual model for the specified

object-class. This model can than be used to rank images without the use of textual meta-data.

The applicability of this method is proven in various experiments on a wide range of datasets,

and it is shown to perform comparable to or better than state of the art without the need for

human interaction.

1These numbers are based on our work carried out late 2006 and early 2007.

Chapter 2

Literature & Methods

This chapter provides an overview of previous relevant research on object recognition. It focuses

mainly on the topics of object recognition and object segmentation and starts with a short

introduction to commonly used feature extraction methods and feature descriptors. Feature

description plays a crucial role in object recognition and it is important that the extracted

features are able to discriminate between different object-classes for the whole system to perform

well. If the feature descriptors for two different object-classes are very similar, the best classifier

will not be able to return useful classifications. In Section 2.2 we present a set of widely used

classifiers. The remainder of this chapter introduces further literature on object detection and

focuses on work in the area of object segmentation.

2.1 Low-Level Features and Object-Class Models

In this section the basic techniques for describing images and the objects therein are laid out.

The first part gives an overview of the low-level features used throughout this thesis. These

features describe the statistics of the images and objects therein. They make up a crucial part

of any object classification system as the object-class models rely on the discrimination of the

underlying features. Simply put, properties that cannot be described by the features cannot

be used to discriminate between the object-classes. While trying to describe the image content

as completely as possible the extracted features aim to be robust to external influences like

viewpoint or lighting changes. After fundamental methods for the image description or more

generally image region descriptors are presented in Section 2.1.1 we introduce a very basic

2.1 Low-Level Features and Object-Class Models 13

object-class model in Section 2.1.2, the common bag of visual-words model (BOW) and the

related texton histogram model which is extensively used in Chapter 4. Finally we discuss how

other research models objects and object-classes.

2.1.1 Image and Region Description

Each object or image classification system requires a representation of the input images. In the

following three paragraphs we introduce sparse and dense image representations and feature

descriptors. Sparse as well as dense image representations can focus on specific image regions

instead of describing the image as a whole. The next paragraph provides a detailed overview

of sparse representation techniques, which only represent “interesting” areas of an image. This

is followed by the presentation of methods that provide a dense representation of the image in

the sense that each pixel contributes to the feature description of the image.

Sparse image representation

In general sparse image representations are carried out in two steps: (i) finding interest

points/regions in the image; (ii) applying a feature descriptor to each region in order to re-

trieve a vector (called feature descriptor) which describes that specific image region. This

provides a sparse representation of the image, since only a subset of image regions is repre-

sented by these feature descriptors. We now give an overview of a few interest point detectors

that are used throughout the computer vision community to model images sparsely. Examples

of detected interest points are shown in Figure 2.1. Note that the early interest point detectors

only detected points of interest (e.g . Harris corner detector), whereas newer methods tend to

determine regions of interest that fulfil certain invariance properties (e.g . the salient region

detector by Kadir et al. (2004)).

Edge and corner detectors. One of the first introduced, and compared to newer achieve-

ments very basic but still influential, interest point detectors is the Harris corner detector

[Harris and Stephens (1988)]. It is based on detecting corners as areas with low self similarity,

i.e. small shifts of an image patch result in a large sum of squared differences. The Canny edge

detector [Canny (1986)] was introduced earlier and provides a basis for the combined corner

and edge detector in Harris and Stephens (1988). It detects image edges based on the gradient,

2.1 Low-Level Features and Object-Class Models 14

(a) (b) (c) (d)

Figure 2.1: Interest point detectors. Example images with interest points overlaid. The
coloured circles indicate the position and scale of the detected interest points. The interest
point detectors used are: (a) difference of Gaussians, (b) Multi-scale Harris, (c) Kadir’s salience
regions detector, (d) Canny edge points (see text). The images are part of the VOC2006 dataset
[Everingham et al. (2006)].

then uses non-maximum suppression, and hysteresis thresholding with a high and low threshold

to trace edges along the image. One technique to extract interest points from the edges is to

sample points along those edge elements. This provides us with two sets of sparse interest

points, namely points in the form of corners and points sampled along edges. As opposed to

the region detectors introduced in the next paragraph, these versions only return points, and

the regions (scale of the circles in Figure 2.1) are usually chosen independently from the image

content. The scale can be sampled from a predefined range, for example. In this work we use

the multi-scale Harris detector as described in Mikolajczyk et al. (2005). It uses a Laplacian

operator to select the scale. It is also possible to use an elliptic region and detect the shape of

it using the second moment matrix of the intensity gradient [Baumberg (2000)].

Affine region detectors. Recent interest point detectors have been extended to detect

scale or affine invariant regions, therefore also called regions of interest detectors. Affine region

2.1 Low-Level Features and Object-Class Models 15

detectors are built to return image regions that are invariant to viewpoint changes, specifically

invariant to affine transforms. Ideally, two regions extracted from the same part of an object

imaged from two different viewpoints contain the same image content and thus the correspond-

ing image patches are almost identical, despite scale or affine transformation of the originating

images. Lowe (1999) uses an approach based on the difference of Gaussians to find scale and

rotation invariant interest points. It draws ideas from the scale invariance analysis carried out

by Lindeberg (1998). An overview and evaluation of state of the art affine region detectors

is given in Mikolajczyk et al. (2005). One of them is the salient region detector introduced

in Kadir and Brady (2001) and extended in Kadir et al. (2004) which is particularly suitable

for object-detection. It detects salient affine invariant regions in images. Examples are pro-

vided in Figure 2.1(c) and we use it in the work of Chapter 6. The detector deems a region

salient if it exhibits unpredictability in both its attributes and spatial scale. Unpredictability is

measured by the information theoretic entropy. The proposed method is invariant to viewpoint

change, comparable to other state of the art detectors, e.g . the maximally stable extremal

regions detector (MSER) by Matas et al. (2002) or Mikolajczyk and Schmid (2002). Further-

more, this salient region detector is insensitive to image perturbations and detects features

repeatably under intra-class variation. This makes it superior to other (affine) region detec-

tors, as Kadir et al. (2004) show in their experiments. One disadvantage is its computational

inefficiency compared to other detectors like difference of Gaussians or multi-scale Harris.

Feature descriptors

Now we briefly present a few feature descriptors that are suitable to describe the detected regions

of interest. In principle it is possible to use these feature representations in the dense framework

as well. However, more evolved versions for dense image representations are introduced later

on, some of which are based on the descriptors presented next. The “support” region for these

feature descriptors is defined by the output of the interest point/region detectors from the

previous section.

Patch based descriptors. This feature descriptor is used in sparse and dense represen-

tations. The patches are usually of small size (e.g . 3 × 3 to 20 × 20 pixels) and represent all

colour-channels of an image directly or the intensity image only. Alternatively the response of

2.1 Low-Level Features and Object-Class Models 16

a filterbank can be used (see next section). A common technique is to vector-quantise small

image patches, e.g . 5× 5 pixels.

SIFT descriptor. In addition the these simple patch based descriptors, there are a variety

of other feature descriptors most of which try to incorporate local spatial information in other

ways. Probably the best known descriptor is the SIFT (Scale Invariant Feature Transform)

descriptor introduced by Lowe (1999). It records the gradient orientations instead of image

intensities and uses a spatial histogram which makes it more robust to small shifts. Specifically,

SIFT defines a 128 dimensional feature descriptor consisting of an orientation (gradient, 8

bins) and location (4 × 4 bins) histogram weighted by gradient magnitude. We use 3 × 3

spatial bins in Chapter 6. A variety of versions exists, e.g . a rotation invariant version called

RIFT [Zhang et al. (2007)]. In Mikolajczyk and Schmid (2003) an extension (GLOH) of SIFT

is introduced. It uses log-polar spatial binning instead of the grid layout. The authors show

that it outperforms SIFT slightly, which itself outperforms many other descriptors such as spin

images [Lazebnik et al. (2003)], PCA-SIFT [Ke and Sukthankar (2004)], and shape context

[Belongie and Malik (2002)] which uses an edge location histogram in log-polar coordinates

and performs similarly except in textured scenes or when edges are unreliable. The gradient

histograms seem to contribute significantly to this performance by representing local shape.

One disadvantage of SIFT is its high dimensionality and one way to reduce it is using PCA-

SIFT by performing Principal Component Analysis (PCA) on the raw 128 dimensional SIFT

vector. This step is also part of GLOH. Originally SIFT refers to an implementation which uses

a scale invariant region detector (interest point detector), based on the difference of Gaussians.

The descriptor is however used stand alone as well in combination with various interest point

detectors. In contrast to the high dimensional SIFT, the best low dimensional descriptors

evaluated by Mikolajczyk and Schmid (2003) are gradient moments [Van Gool et al. (1996)]

and steerable filters [Freeman and Adelson (1991)].

Shape descriptor. The previous descriptors capture basic image statistics, whereas oth-

ers try to model the shape of object parts more explicitly. Forssen and Lowe (2007) introduce

a shape descriptor for the MSER mentioned earlier. It applies the SIFT descriptor to a shape

mask defined by the maximally stable extremal regions. The authors show that this shape

2.1 Low-Level Features and Object-Class Models 17

descriptor is more robust to illumination changes than SIFT computed on the intensity patches

directly and that it increases the number of matches across images, especially in natural scenes

with many near occlusions (e.g . trees, bushes). Other approaches capture shape even more ex-

plicitly and are based on template matching using Chamfer distance. Gavrila (1998) presents

a hierarchical template matching system that uses distance transforms. Shotton et al. (2005),

Opelt et al. (2006) use a similar approach for object detection. Specifically, they use a fragment

dictionary of spatially localised re-occurring shapes (object outlines) in the boosting framework.

This approach might be more suitable for objects where shape is the major defining property

(e.g . mugs, bottles). Patch based descriptors like SIFT are more easily “distracted” by appear-

ance properties (e.g . bottle labels) that are not as defining for this class as its shape. Their

works show that purely shape based systems can perform equal to appearance based systems

and the ideal object recognition system would combine appearance and shape based ideas.

Dense feature representation

Dense features are a widely used alternative to region detectors. Again either sub-regions of

an image or the whole image can be described by a dense feature representation. “Dense” here

means, that the features are not only extracted at previously detected interest points, but a

feature descriptor is computed for each image-pixel or sampled on a dense grid. One advantage

of dense representations over sparse ones can be the fact that regions with uniform texture,

which usually aren’t returned by interest point detectors (see the sand and snow in Figure 2.1

on page 14), will be represented equally well. The preferred method depends on the application

and computational constraints. There is no general rule stating clear advantages of sparse

versus dense image representations. Jurie and Triggs (2005) compare these two ideas on the

object categorisation task and conclude that dense features perform better there. However,

due to computational constraints a combination of sparse representations and dense sampling

can be useful. Leibe and Schiele (2003) use a sparse representation of interest points as a first

step and refine the initial object detection by further sampling of dense features around the

initial hypothesis. Thereby, dense sampling in the whole image is avoided and only applied to

“interesting” regions.

2.1 Low-Level Features and Object-Class Models 18

Figure 2.2: Filter bank and filter-responses. From left to right (top row): three Gaussians,
four Laplacians of Gaussians, and four derivatives of Gaussians. The filter-responses (bottom
row) are computed on the intensity channel L of the Lab colour space.

Filter banks. A set of filters is convolved with the image channels to give a set of filter-

responses (see Figure 2.2), thus describing each image-pixel with a feature descriptor whose size

depends on the number of filters and image-channels used. Leung and Malik (1999, 2001) use

a total of 48 filters for recognition of surfaces (materials). They also introduce a feature quan-

tisation step which is explained later on in this section. Varma and Zisserman (2003) evaluate

the performance of filter banks and intensity patches for texture classification. The authors

compare different filterbanks (MR8, MR4, LM and S) with a solely intensity based approach,

and conclude that intensity based approaches can perform as well as filterbanks. MR8 consists

of 38 filters that are based on Gaussians, Laplacian of Gaussians, and variations of first and

second order derivatives of Gaussians to give six edge and bar filters with different orientations.

The oriented filters are “collapsed” into the maximum response over all six orientations, thus

resulting in only eight filter responses and a rotation invariant feature descriptor. The MR4

filterbank is related but only uses one instead of three different scales for the orientation filters.

LM stands for the filterbank used in Leung and Malik (2001) and S for the filterbank used by

Schmid (2001). Serre et al. (2005), who motivate their approach by biological correspondences

use a set of eight Gabor filter bands, each band contains filters in two sizes. They compute

the maximum response of each filter band in a certain image region which leads to a scale and

shift invariant response per region. Patches from the resulting feature maps are used as feature

descriptor. The classification depends on the minimum distance of test patches to training

patches computed over all positions and scales. Practically, this approach provides a dense

representation of the image, albeit it doesn’t directly follow the common approach where fea-

tures descriptors are computed in equally spaced window regions. Winn et al. (2005) designed

the filterbank shown in Figure 2.2 with three Gaussians, four Laplacians of Gaussians, and

2.1 Low-Level Features and Object-Class Models 19

Figure 2.3: Haar-like features. (a) shows a two rectangle, (b,c) three rectangle, and (d)
four rectangle Haar-like feature. The sum of the pixels in the black rectangles is subtracted
from the sum of pixels in the white rectangles. For example, feature (a) is overlaid to an image
on the right hand side. All pixel intensity values in the area marked with “+” are added and all
intensity values in the black region, marked with “-”, are subtracted from those. This results in
the feature response for point p.

four derivatives of Gaussians from left to right. The filters are applied to the L channel of the

CIE-LAB colour space, and the Gaussians are additionally applied to the a and b channels,

thus resulting in a 17-dimensional feature response.

Haar-like filters. They are simple filters based on Haar wavelet basis functions and

compute the difference between rectangular responses as illustrated in Figure 2.3. They were

introduced to the computer vision community by Papageorgiou et al. (1998) and used in the

famous work of Viola and Jones (2001), which introduces their face detector. Recent work

uses related features in the Random Forest framework (e.g . Shotton et al. (2008)) and we

present the details of our features that are a more general version of these Haar-like features in

Chapter 5.

HOG descriptor. Figure 2.4 shows a visual representation for the HOG descriptor

computed on example images. It was first introduced by Dalal and Triggs (2005). The so

called Histograms of Oriented Gradients (HOG) descriptor, creates a dense image description

by using locally contrast normalised 1D-histograms of oriented gradients. These orientation

histograms are computed over small non-overlapping cells (e.g . 8×8 pixels) covering the whole

image, thereby creating a dense description. Each of those cells is normalised with respect

to a different block (a set of neighbouring cells) and thus contributes to the HOG descriptor

multiple times. The authors tested several modifications from this baseline: e.g . radial cells,

2.1 Low-Level Features and Object-Class Models 20

(a) (b)

Figure 2.4: Example HOG. Visualisations of the HOG descriptor. The spatial histogram
of each cell is visualised by plotting a weighted line in the appropriate direction. The input
images correspond to the images used in Figure 2.2 on page 18 (HOG in (a)) and the image in
the top row of Figure 2.1 on page 14 with its HOG descriptor shown in (b).

rectangular cells, or different sizes of cells and blocks. Often the HOG descriptor of the whole

image is represented as a 1 × d dimensional feature vector that can then be used in the SVM

framework, as we do in Chapter 6. This descriptor idea can be seen as a dense version of the

SIFT descriptor.

Quantisation of low-level features

The previous two sections introduced a range of widely used low-level feature descriptors. Many

of these can be very high dimensional, e.g . 5× 5 colour patches would define a 75 dimensional

feature space, SIFT features a 128 dimensional feature space. Also the range of each dimension

can be very large, either real valued for filterbanks, or usually one byte for patch descriptors

and SIFT. Vector quantisation of these raw feature descriptors is a common step in the object

or texture recognition community. One reason for the quantisation is the large range of values

and their sensitivity to small image perturbations. Thus the quantisation introduces robustness

and opens up the possibility for a variety of object-class models, some of which are introduced

in the next section.

The most widely used method employs k-means clustering in the Euclidean vector space.

K-means starts with k randomly selected data points, called cluster centres (different data

2.1 Low-Level Features and Object-Class Models 21

Figure 2.5: Vector quantisation. This figure illustrates the dense feature extraction of 5×5
colour patches followed by k-means clustering. In the quantisation step each pixel is assigned
to the cluster centre (red) that is closest to its patch. Each colour corresponds to one of the 50
cluster centres / textons. More example images are shown in Figure 2.6.

driven initialisation techniques are used as well). The first step assigns each of the remaining

data points to the closest cluster centre. We use Euclidean distance as the distance measure,

but it is also possible to use Mahalanobis distance, for example. The next step recomputes the

cluster centres to be the mean of each cluster. These two steps are alternated until convergence.

Elkan (2003) propose a sped up version of k-means using the triangle inequality. Other methods

such as agglomerative clustering in Leibe and Schiele (2003), which uses normalised grey-scale

correlation on 25 × 25 image patches, or the mean-shift based method described in Jurie and

Triggs (2005) are used as well. The latter method assures that dense regions in feature space are

not overrepresented by visual-words. New cluster centres are added iteratively and placed based

on mean-shift on sub-sampled data points. After a new centre was added all points assigned

to it are removed (points are assigned to a centre if they lie within a certain radius r). The

removal of points ensures that centres are not repeatedly assigned to dense regions. In standard

k-means clustering this cannot be ensured. The radius r, in a sense enforces a minimal distance

between cluster centres. Some of these methods are going beyond simple vector quantisation

and are crafted towards their application, object recognition. Winn et al. (2005) introduce a

method to reduce the size of the visual-word vocabulary while preserving its discrimination

abilities. The authors learn a multivariate Gaussian distribution with diagonal covariance

matrix over textons for each object-class and try to merge textons together in order to obtain

a compact yet discriminative “Universal Visual Dictionary”. Some of the problems of k-means,

e.g . overrepresented regions in feature space can be solved this way.

Given the codebook described by the cluster centres computed with the method of choice,

each original feature vector can be assigned to its closest cluster centre (hard quantisation) or

2.1 Low-Level Features and Object-Class Models 22

Figure 2.6: Texton maps. Different colours uniquely identify the 50 different textons.

to several of the closest cluster centres in various ways (soft quantisation); for example, the

assignment can be weighted by the distance to each of the cluster centres. Figure 2.5 illustrates

these steps for the case of a hard assignment. Agarwal and Roth (2002) use patches extracted

at locations defined by an interest point detector. Each patch is then assigned one codebook ID

(hard assignment) from a codebook that was computed using agglomerative clustering. Leibe

and Schiele (2003) also use a patch based codebook computed by agglomerative clustering,

but assign all matching codebook IDs to the image patch (using the same threshold t and

normalised grey-scale correlation as distance measure that were used during clustering). This

relates to a soft assignment with equal weighting. It is also possible to fit a Gaussian Mixture

Model (GMM) [Bishop (2006)] using Expectation Maximisation (EM) to the feature vectors

and define the soft assignment as the probability of the feature vector being assigned to each of

the Gaussians. I.e. the number of Gaussians in the mixture model corresponds to the number

of visual-words or textons. Csurka and Perronnin (2008) for example use this technique.

Textons. If the patches are extracted densely (i.e. for each image pixel) the assigned

codebook IDs are often referred to as textons. The result may be visualised by generating

colour-coded texton maps as shown in Figure 2.6. Leung and Malik (1999) first introduced

this concept of textons into the computer vision community, and used a distribution over the

quantised vectors. Cula and Dana (2001), Varma and Zisserman (2002a) extend this idea and

show its value for the material classification task. Varma and Zisserman (2002b) compares

this texton based classification to the PDF (probability density function) approach, where the

2.1 Low-Level Features and Object-Class Models 23

feature space is modelled by a PDF directly (e.g . using a Gaussian mixture model), and found

that the performance was comparable on the material classification task. Textons can be based

on a filterbank as in Winn et al. (2005), Shotton et al. (2006) or small image patches, as used

throughout this thesis.

The next section gives an overview of object-class models that employ the texton approach

described here. We also introduce the concept of visual-words and related models. Visual-

words commonly denote sparse quantised feature descriptors, e.g . quantised SIFT descriptors

extracted at regions of interest.

2.1.2 Visual Object-Class Models

As explained before, object recognition refers to image classification on the one hand and

object detection on the other. First the bag of visual-words model is introduced as a very

common model for image classification. Modifications of this baseline method are used for object

detection or image retrieval and we employ the related texton histogram models throughout this

thesis. After the presentation of these models we give an overview of geometric models followed

by explicit and implicit shape models.

Bag of visual-words model

This is a commonly used model in object recognition, object or texture classification, scene

classification, image retrieval and related tasks. It directly relates to the bag of words model

(BOW) commonly used in text retrieval [Baeza-Yates and Ribeiro-Neto (1999)]. It has been

introduced into the computer vision community by Sivic and Zisserman (2003), who apply it

to object retrieval in videos. Csurka et al. (2004) use this approach for image classification.

The BOW model is usually based on interest points and corresponding feature descriptions and

uses a clustering-/vector-quantisation method on top of it. Eventually each interest point is

represented by an ID indexing into a visual-codebook denoted V . An image is then modelled

as a bag of those so called visual-words and can thus be described by a vector h that stores

the distribution of all assigned codebook IDs. Note that this discards the spatial distribution

of the image features. In contrast, the image descriptions introduced in the previous sections

still carry spatial information, especially the dense ones, e.g . HOG, are often used directly to

2.1 Low-Level Features and Object-Class Models 24

provide a spatial description of the objects. We now give an overview of state of the art work

that is based on this idea. In Chapter 6 we employ the BOW model with a support vector

machine (SVM) classifier.

State of the art overview. Sivic and Zisserman (2003) use tf-idf weighting on the visual-

word counts produced by interest point detection and SIFT features in order to retrieve frames

in videos containing a query object. Tf-idf is a standard text retrieval tool which is used to

compute the similarity of text documents.

Csurka et al. (2004) compare two common models, namely a Naïve Bayes method and

a discriminative support vector machine approach. The SVM classifier uses the aforemen-

tioned visual-word distribution h for each image, together with a one against all approach for

multi-class classification. The Bayes model is represented by the class conditional probabilities

P (vt|Cj) for visual-word vt, t = 1, . . . , |V |, which are estimated from the training images using

Laplace smoothing. Then the classification for an image is computed using

P (Cj|I) ∝ P (Cj)P (I|Cj) = P (Cj)

|V |∏
t=1

P (vt|Cj)N(t,I) (2.1)

with Cj for the object-classes and I for the test images. N(t, I) is the number of occurrences

of visual-word vt in image I.

The bag of words model was employed by one of the most successful methods in the PASCAL

2006 challenge [Everingham et al. (2006)]. One of the best performing approaches uses a

combination of the methods introduced in Zhang et al. (2007) and Lazebnik et al. (2006).

The system uses the bag of visual-words model on sparse Harris-Laplace and Laplacian feature

detectors or dense features on the one hand, and an extension which uses spatial pyramids

to represent spatial dependencies on the other hand. This shows that this model compares

to other state of the art object recognition methods despite its apparent simplicity and crude

neglect of spatial feature relations.

Texton histogram models

As mentioned before, the texton histogram and the bag of visual-words model both refer to

a bag of quantised low-level features. The difference lies in the terminology where the BOW

2.1 Low-Level Features and Object-Class Models 25

model refers to a sparse representation and textons refers to a dense representation where a

texton ID is assigned to each pixel.

In this thesis we mostly use textons based on small 3×3 or 5×5 pixel wide colour patches in

the CIE-Lab colour space, thus resulting in a 27 or 75 dimensional feature vector for each pixel

as illustrated in Figure 2.5 on page 21. Instead of using the raw image pixels the responses of a

filterbank can be used as pointed out previously. A simple object-class model based on texton

histograms is now presented.

Modelling classes with textons. Given the textons, there are a variety of models

that can be used to model an object-class. Histograms (distributions over textons) are the

most widely used method to exploit the bag of visual-words methodology, see for exam-

ple Fei-Fei and Perona (2005), Zhang et al. (2007). Quelhas et al. (2005), Sivic et al. (2005)

and Bosch et al. (2006) use those histograms in connection with probabilistic Latent Semantic

analysis (pLSA) [Hofmann (2001)] (see Section 2.2.3). Bosch et al. (2006) use dense SIFT fea-

tures for the visual-word retrieval. Sivic et al. (2005) present an approach which “learns” object

categories without any supervision. They compute SIFT features on a Caltech and MIT image

dataset and then use pLSA and Latent Dirichlet Allocation (LDA) to discover “topics”, in their

case object categories. Shotton et al. (2006) use boosting on simple localised histograms to

classify each pixel in an image for a semantic segmentation into object regions. In addition to

the Bayes model in (2.1) we now introduce another simple, but often used model.

Nearest neighbour matching is a good baseline method that is still used often due to its

simplicity and relatively good performance. One interesting point to note is that the k-NN

classifier with majority vote is universally consistent [Devroye et al. (1996)]. A classifier is

called consistent if with increasing data the risk of the classifier approximates the Bayes risk

of the underlying distribution. It is called universally consistent if this property holds for all

distributions of the data. Some even claim future image classification methods can be based

on massive amounts of training data and the nearest-neighbour framework (e.g . Malisiewicz

and Efros (2008)). Varma and Zisserman (2003) apply nearest neighbour matching to texture

classification. Their textons are based on filter banks or intensity patches. During classification

normalised frequency histograms that describe the texture distribution of the test image h are

compared to the histograms of the training images. Each training image defines an exemplar

2.1 Low-Level Features and Object-Class Models 26

histogram pj. The distance between the histograms is measured using χ2 distance, with the

subscripts describing the histogram bins:

χ2(h,qj) =
∑
i

(hi − qji)2

hi + qji
.

One important parameter in these kinds of models is the size of the visual-codebook |V |.

Generally it seems to be the case that the optimal size and composition of the texton vocab-

ulary depends on the specific application and cannot be determined analytically. Usually it is

tuned based on cross-validation, or fixed to “reasonable” values. In Winn et al. (2005) they

represent each class by a Gaussian distribution over texton histograms computed from the 17

dimensional filter-response presented in earlier sections. The authors propose a method that

merges codebook entries to result in a smaller more compact, though discriminative codebook.

Geometric and explicit shape models

The object-class models introduced so far mostly employ the bag of visual-words (or textons)

model. They are based on relatively simple low-level features (e.g . colour patches or filterbank

responses) and slightly more advanced and very successful orientation histograms (e.g . SIFT

or HOG). Although the bag of visual-words model performs almost surprisingly well given the

fact that it ignores any spatial relation between image features, it is understandable that the

incorporation of such spatial relations can boost performance. Now a few such approaches are

introduced.

Fergus et al. (2003) proposed an object-class model, called constellation model. Their ap-

proach is based on the work of Burl et al. (1998), which models objects as random constellations

of parts. Each part has an appearance, relative scale and can be occluded or not. The object’s

shape is modelled by the mutual position of the constellation parts. Weber et al. (2000a) and

Weber et al. (2000b) proposed a maximum likelihood unsupervised learning algorithm for the

constellation model. Unlike in the BOW approach, here the connections between all parts are

modelled and the model is fully parametrised in the sense that each part is represented as a

distribution over appearance, scale and occlusion and the shape is modelled as a joint Gaussian

density of the part’s locations.

2.1 Low-Level Features and Object-Class Models 27

Fei-Fei et al. (2003) build on this constellation model and provide a description of a “hi-

erarchical Bayesian” method for unsupervised learning of object categories using a mixture of

constellation models. Its parameters are defined via a hyper distribution, thus accomplishing

the hierarchical Bayesian idea. The feature extraction and modelling is a simplified version

of Fergus et al. (2003). After learning the hyper parameters from images of objects a new

object-class (distinct from the ones that were used for the hyper parameter estimation) can be

learnt with very few sample images (e.g . 1 to 5).

Fergus et al. (2005b) simplify the original fully connected constellation model and reduces

it to a simpler star model which is compared to the original approach and to a variation of the

classification stage, where “exhaustive search” instead of extracted feature points is used. This

exhaustive search is possible due to the highly decreased complexity of the star-model.

Kumar et al. (2004) describe a generative probabilistic model which falls into the same group

of pictorial structure models as Fergus et al. (2003). In contrast to Fergus et al., parts are ex-

plicitly learnt in a first step from moving objects in videos as rigid components of those objects.

The proposed method enables the recognition of various deformable objects from images. Their

approach extends the articulated pictorial structure of Felzenszwalb and Huttenlocher (2000)

in a number of ways. The model includes both the outline and the enclosed texture of the

part of the object that is modelled. The outline of the object parts is modelled using Chamfer

distance and the texture is modelled with Gaussian mixtures. The structure of the graph is

modelled using a completely connected Markov Random Field.

Leibe et al. (2004), successor of Leibe and Schiele (2003), use sparse raw image patches

as the main feature. Each of those patches stores the relative translation with respect to the

object centre. This corresponds to a star model as proposed by Fergus et al. (2005b), but

it is centred on the object’s centroid rather than one of the parts. During the classification

stage the test-patches are matched to the codebook and a generalised Hough voting is used

to retrieve an initial hypothesis for the object centre, which is determined using mean-shift

on the voting space. The codebook is learnt by agglomerative clustering on images patches

extracted from the training data. Each codebook entry is represented by a patch and a list of

all corresponding object centres that occurred in the training images. Leibe et al. (2004) provide

a thorough experimental evaluation and add the Minimal Description Length (MDL) criteria

2.1 Low-Level Features and Object-Class Models 28

to their previous work. MDL is an information theoretic formulation describing the preference

for simpler explanations over more complicated ones and is used to remove wrong hypothesis,

especially false positive detections of cars. Fritz et al. (2005) extend these more generative

detection models and provide a system which integrates a representative and discriminant

model for object category detection. The representative part is based on the Implicit Shape

Model (ISM) introduced by Leibe and Schiele (2003). The discriminant part uses SVMs with

local kernels. The ISM finds a set of promising hypotheses and estimates the support of those.

As a second step the discriminative model discards false positive hypotheses. One of the

interesting points is that both models use the appearance codebooks as internal representation

and the SVM kernel uses a computationally efficient representation of the scalar product which

is expressed as a codebook matching problem.

Both Shotton et al. (2005) and Opelt et al. (2006) propose geometrically very similar ap-

proaches which use boundary/edge information instead of image patches to perform the object

classification. In both cases a star model with respect to the object’s centroid is used to rep-

resent geometric properties of the object. One objective of Opelt et al. (2006) is to show that

object category recognition is possible, solely based on information describing the boundary

of the objects. The method uses class discriminative boundary fragments combined with a

description of the object’s centroid, similar to Leibe et al. (2004). To match the boundary frag-

ments Chamfer distance and the pixel distance of the predicted and the real centroid are used.

AdaBoost with weak detectors based on a few boundary fragments is used as a strong classifier.

Each boosted classifier votes in a Hough voting space during the detection step. The votes are

then accumulated in a circular search window around the candidate points, using Mean-Shift

mode estimation. The proposed method results in good object category recognition and also

returns a segmentation of the detected objects, based on the relevant boundary fragments.

Shotton et al. (2005) use a variation of Chamfer matching called oriented Chamfer matching

which takes the edge orientation into account. GentleBoost is employed to learn the features

and the classifier. These approaches are very similar to Leibe et al. (2004) and differ in the

use of boundary/edge features and boosting instead of patch based features and a probabilistic

model. Leordeanu et al. (2007) also aim to model the object’s shape. Their underlying feature

is an edge point together with its normal. The shape is then modelled as a fully connected

2.1 Low-Level Features and Object-Class Models 29

graph. The proposed method performs very well compared to the state of the art.

Implicit shape models

The methods introduced in this section also aim to model object shape, but they are some-

what less explicit in the sense that they do not directly use pictorial structure like models or

connections of object parts, but rather combine the information in a more implicit manner.

Lazebnik et al. (2006) introduce a spatial pyramid matching scheme that consists of BOW

histograms computed in image sub-regions. This model thus extends the global bag of visual-

words model by adding additional visual-word distributions computed over smaller sub-regions.

It transfers the idea of the “pyramid match kernel” proposed by Grauman and Darrell (2005) to

match two sets of features in feature space into the image space. This is done by quantising all

features into |V | types and consecutively matching those of the same type. Lazebnik et al. (2006)

show improvement over the standard BOW model for the scene recognition and image classi-

fication tasks. Bosch et al. (2007a) build on top of this pyramid match kernel and use HOG

instead of a SIFT and GIST [Torralba (2003)] like feature representation. They also learn the

weighting of the different pyramid levels automatically and show how an appearance kernel can

be combined with the spatial kernel.

Winn and Jojic (2005) introduce a model to learn object segmentation from unannotated

images. The authors introduce a generative probabilistic model that combines low-level features

as colour and edge information with top-down shape information that is learnt during training.

The shape is modelled by means of a shape mask, which defines the probability for each pixels

to lie inside the object in a canonical pose, and an edge mask which models the probability of

edge occurrences as a Gaussian distribution over Canny edge strengths. Each of these masks is

transformed using a deformation field, such that it can adapt to specific object instances that

differ from the canonical pose.

Savarese et al. (2006) model appearance and shape jointly. They use correlations between

textons to model the spatial relations between textons. The features are similar to the ones

used in the Random Forest framework in Chapter 5.

Winn and Shotton (2006) introduce an approach to handle recognition of partially occluded

objects. A so called layout consistent random field model is introduced. It is represented as

2.2 Classifiers and Generative Models 30

an ordered set of parts arranged on a grid as opposed to the previously described star- or fully

connected models. During recognition an image patch is labelled as a specific part using a

Random Forest. The random field allows deformation of the labels and thereby the recognition

of slightly different shapes than present in the training examples.

2.1.3 Summary

This section gave an introduction into image representations, which are the underlying ingre-

dient to all computer vision algorithms. We presented the concept of sparse and dense feature

representations and explained several commonly used interest point detectors as well as feature

extraction methods and various approaches for feature description. Then we introduced the

nearest neighbour framework based on the example of the commonly used bag of visual-words

or texton model. The nearest neighbour classifier based on texton histograms is the key part

of Chapter 4, where we build on top of this exemplar based nearest neighbour method. We

also gave an overview of related work that focuses on modelling object shape. The next section

introduces further classifiers that are commonly used in the object recognition community.

2.2 Classifiers and Generative Models

Here we give an introduction into the machine learning techniques that are heavily employed

throughout this thesis. Classifiers refer to a subset of pattern recognition methods that, in gen-

eral, given a training set T consisting of n data points T = {x1, . . . ,xn} and their corresponding

feature descriptions as well as classlabels {y1, . . . , yn} are able to predict the class-label y for a

previously unseen test data point x [Duda et al. (2001), Bishop (2006)]. The feature description

x can be of any form, but they are often represented in an Euclidean vector space. They can

also be transformed into a different vector space using a transformation function Φ. This trans-

formation into (often) higher dimensional vector spaces can improve the discrimination between

classes. See Schölkopf and Smola (2002) for more details about kernel learning. Examples for

such feature descriptors x are the previously introduced texton or visual-word histograms in

the bag of visual-words model (BOW), or the 128 dimensional SIFT vectors embedded into the

Euclidean vector space.

2.2 Classifiers and Generative Models 31

In the first two subsections we focus on two discriminative classifiers: (i) the support vec-

tor machines which are widely used in the machine learning as well as the computer vision

community, and (ii) Random Forests which experienced a recent surge of applications to com-

puter vision problems. In addition to discriminative classifiers there are generative classifiers.

Some of the topic models presented in Section 2.2.3 fall into this category. Generally speak-

ing, discriminative classifiers model the class probability given the feature description directly,

i.e. P (y = c|x), also called posterior probability. Generative classifiers model what is common

between classes, i.e. P (x|y), called likelihood. The classification is then determined using Bayes’

rule: P (y|x) = P (x|y)·P (y)
P (x)

, where P (y) denotes the class priors and P (x) the normalisation fac-

tor, also called evidence. Finally, Section 2.2.4 gives an introduction to energy minimisation

techniques. We introduce the energy formulation for the image segmentation problem and

present a few commonly used methods for its minimisation.

Before going into the details it should be noted that in addition to noise in the feature

description x, which is often to be assumed Gaussian, there can be noise in the class-labels

y as well. The latter is often not modelled explicitly, but it is taken care of by the classifier

being robust to noise. Brodley and Friedl (1999), for example, investigate different filters to

remove inconsistent training data. Their method is inspired by work about outlier detection

for regression models, but aims to remove data points that would be outliers in any model.

We use a similar option for the support vector machine training in Chapter 6. Lawrence

and Schölkopf (2001) on the other hand approaches the whole classification problem with a

generative model, which enables modelling of the label noise explicitly. This method improves

classification significantly in cases of large amounts of mislabelled training data, but does not

help much if the noise level is low.

2.2.1 Support Vector Machines

Support vector machines (SVM) are a widely used tool in the machine learning and computer

vision community. They were motivated by results of statistical learning theory and originally

developed for pattern recognition they are now described in various books [Vapnik (1999),

Schölkopf and Smola (2002)] and tutorials, e.g . Burges (1998). The basic idea is to learn

a hyperplane in some feature space in order to separate the positive and negative training

2.2 Classifiers and Generative Models 32

examples with a maximum margin, thus called maximum margin classifiers. Also see Cortes

and Vapnik (1995) for an early reference. There have been various extensions and improvements

over the years. One example is the recent variation [Tsochantaridis et al. (2004)] to enable

the learning of structured output spaces instead of simple two- or multi-class classification

problems. This method was employed in the work of Blaschko and Lampert (2008) where

structured output SVMs are applied to object detection and the output consists of a bounding-

box and the class-label. Szummer et al. (2008) use the structured output SVM framework to

learn parameters for CRFs in an efficient manner. Bach et al. (2004), Varma and Ray (2007)

extend SVMs to multi-kernel learners, which combine various base kernels into an optimal

domain-specific kernel.

In our work in Chapter 6 we use a variation of the standard form that takes into account dif-

ferent weights for positive and negative training errors. It was introduced by Morik et al. (1999)

and the SVM training minimises the following equations:

min
w,b,ξ

1

2
wTw + C+

∑
i:yi=1

ξi + C−
∑

j:yj=−1

ξj (2.2)

subject to yl
(
wTΦ(xl) + b

)
≥ 1− ξl, (2.3)

ξl ≥ 0, l = 1, . . . , (n+ + n−) . (2.4)

Here the class-labels yl ∈ {1,−1}. C+ and C− are the false classification penalties for the

positive and negative data points, with ξ being the corresponding slack-variables. For most

of our experiments we use a radial basis function kernel (RBF) based on a Gaussian kernel:

k (x,x′) = exp
(
−γ ‖x− x′‖2

)
. Here k (x,x′) = Φ(x) · Φ(x′) is defined as the dot product

of feature transformations Φ of the input data points. In the case of the Gaussian kernel the

implicit definition of Φ describes a transformation into an infinite dimensional feature space, but

the kernel function k can be used directly if the “kernel trick” is applied (the dual formulation

of (2.2)–(2.4), see for example Bishop (2006) for a detailed introduction).

2.2.2 Random Forest Classifier

The Random Forest classifier is another discriminative classifier that has become very successful

in computer vision. We explore their suitability to object segmentation in Chapter 5. Random

2.2 Classifiers and Generative Models 33

Forests are based on decision-trees [Quinlan (1993)] and have been introduced to the machine

learning community by Amit and Geman (1997), Breiman (2001). Dietterich and Fisher (2000)

did related work for constructing ensembles of decision-trees and compared methods based

on bagging, boosting, and randomisation. Their popularity in the computer vision community

arose mainly from the work of Lepetit and Fua (2006), Ozuysal et al. (2007), and a large number

of papers have applied them to various supervised classification tasks [Marée et al. (2005),

Moosman et al. (2006), Winn and Criminisi (2006), Bosch et al. (2007b), Deselaers et al. (2007),

Yin et al. (2007), Shotton et al. (2008)]. Decision-tree classifiers have been known for a long

time, but they have shown problems related to over-fitting and lack of generalisation. The main

idea behind Random Forest is to try and mitigate such problems by

1. injecting randomness into the training of the trees, and

2. combining the output of multiple randomised trees into a single classifier.

Random Forests have been demonstrated to produce lower test errors than conventional

decision-trees [Yin et al. (2007)] and performance comparable to SVMs in multi-class prob-

lems [Bosch et al. (2007b)], while maintaining high computational efficiency. Sharp (2008)

showed how to implement them on a GPU very efficiently. We now summarise the appealing

features of Random Forests as well as laying down the notation before we give a detailed intro-

duction into the training and the parameters of the Random Forest classifier. This is followed

by a discussion of the classification step. Finally, we discuss some theoretical properties and

pre-conditions for Random Forests.

Random Forest features and notation

It can be advantageous to use Random Forests over, for example SVMs, because of the following

properties:

1. their computational efficiency in both training and classification

2. independence of the trees allows for easy implementation and parallelism

3. their probabilistic output

4. the seamless handling of a large variety of visual features (e.g. colour, texture, shape,

depth etc.)

2.2 Classifiers and Generative Models 34

falsetru
e

T

Figure 2.7: Decision-trees and node-tests. Unbalanced binary decision-tree with its node-
tests T . In a general binary decision-tree the node-test T : D → {true, false} can be any
function from the input domain D into true and false. It is common to use a function tp :
D → R and a threshold λ as a special case of T .

5. the inherent feature sharing of a multi-class classifier (see also Torralba et al. (2004) for

feature sharing in boosting).

In this work we focus on binary decision-trees as shown in Figure 2.7 as the basic part of

our Random Forests. The node-tests of these decision-trees can be of the most general form

T : D → {true, false}. Commonly, functions of the form

tp : D → R (2.5)

together with a threshold λ are used. This defines the node-test as:

T =

 tp < λ go to left child

else go to right child
. (2.6)

Note that the underlying features (i.e. D) can be of general nature, e.g . RGB, HOG or the

output of a filter bank. Also the function tp is of a very general nature: it could be a sum of

feature responses in a defined spatial extent (see Figure 5.1 on page 95), a linear classifier, the

output of another tree, the output of AdaBoost, to give a few examples.

Training the Random Forest

Given the general definition of decision-trees, their structure and decision nodes are learnt

discriminatively as follows. Starting from the root, given the labelled training data, the function

2.2 Classifiers and Generative Models 35

����

�
�
�
�

��

������

����

����

����
����

��

��

��

��
��
��
��
��

�
�
�
���

��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

��

��
����

�
�
�
�

�
�
�
�
�
�
�
�

��

��
��
��
��

��

����

��

��������

��
��

����

��

����

�
�
�
�
����

��
��
��
�� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

��

����
����

����

��

����

�
�
�
�
����

��
��
��
�� �

�
�
�

�
�
�
�

����
��

��

��
��
��
��

����
��������

��
��

����

����

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

����

�
�
�
� ��

�
�
�
� ��

��

��
�
�
�
�

�
�
�
�

��

������
��
��

�
�
�
���

��
��
�
�
�
�

��

��

����

����

������

��

��������

��
����

����

����

��
��
��
��

�
�
�
�
����

��
��
��
�� ��

��

������

����

��
��
��
��

��
��
��
��

��
��
��
�� �

�
�
�

��

�
�
�
�

����

��
��
��
��
��

��

��
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
���

��

����

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�
�

��
����

����
��

��

��

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

����

��
��
��
����

��
��
��
������

����

������

����

�
�
�
�

��
��
��
��
��

�
�
�
�����

����

��
��
��
���
�
�
�

��
�
�
�
�

�
�
�
�

��

�� ����
����
����

�
�
�
���

��
��
�
�
�
�

��

independently

decision trees
train

bagging

sub−sample training data for each tree

during training of each node

tp

tp
tp

per decision-tree
of node-tests
Pool P

tp

tp#nf

tp

Training data T

sample #nf node-test

max. ∆E

Figure 2.8: Random Forest. Illustration of the Random Forest classifier in the 2D case
with a linear node-tests. Each decision-tree is trained independently. The training data for
each tree is sub-sampled from the pool of all training data (bagging). During training of a
specific node a number of node-tests is sub-sampled from the pool of all those functions and
the one that maximises the information gain ∆E is selected as node-test. This corresponds to
splitting the feature space into regions that primarily contain training data of one class. The
leaf nodes represent the empirical class distribution of the corresponding feature space regions.

tp and threshold λ which maximise the information gain ∆E are found.

∆E = E (P)−
∑
j

|Qj|
|Q|

E (Qj)

where Q is the set of data points at the given node and Qj j Q are the left and right subset

caused by partitioning the data with tp < λ. E (Q) = E (q) = −
∑N

i=1 qi ln(qi) with q being

the histogram over the classes of the data in Q. This basic idea is similar to the C4.5 algorithm

introduced by Quinlan (1993) for “ordinary” decision-trees and it aims to maximally separate

the classes in Q. The algorithm proceeds iteratively with the left and right subsets Qj at the

children nodes until Qj is empty or a threshold for E(Q) or ∆E is reached. Sometimes it

is beneficial to “normalise” the training data during computation of ∆E, by weighting each

training point with its inverse class prior probability. Note that this is different to normalising

the empirical class posteriors in the leaf nodes.

See Figure 2.8 for an illustration of how training works in a two dimensional case. The

node-test tp and λ define separating hyperplanes/lines. During training of the tree each node

only “sees” a randomly chosen subset of the entire pool P of possible node-tests. Training is

achieved by finding the node-test tp and threshold λ which yields maximum information gain

∆E within this restricted, randomised search space. The “randomisation” can be tuned by

the size and composition of the pool P and the amount of optimisation of λ (e.g . Lepetit and

2.2 Classifiers and Generative Models 36

Fua (2006), Moosman et al. (2006) do not optimise λ, but pick it randomly). The training data

is sub-sampled (bagging) to increase independence of the trees Breiman (2001) and reduce

training time. During training the empirical class posterior distributions are stored in the leaf

nodes, e.g . in the form of histogram counts over the class-labels of the training data as shown

in Figure 2.8. One advantage of Random Forests is that the decision-trees in the Random

Forest can be trained in parallel. Crucial, however, is that they are “independent” (randomised

enough), i.e. result in independent classifications of the data (see Breiman (2001)).

Random Forest Parameters The following summarises the set of parameters that guide

the training of the Random Forest.

1. Number of decision-trees |RF | in the Random Forest: The number of decision-

trees greatly influences the performance of the Random Forest. Additional indepen-

dent/randomised decision-trees add further information over the training data, as each

tree partitions the feature space into different cells and collects the empirical class pos-

teriors for those cells in the leaf nodes. Our experiments show that the performance

increases the more decision-trees are used, but the improvement is small for more than

15–20 decision-trees are used (see Section 5.4.2).

2. Node-test pool: The pool of node-tests P describes the set of possible functions that

can be selected for a node during training. The following parameters describe the possible

options for the node-tests described by (2.5).

(a) number of functions #nf created for the “per node” pool: This is the main parameter

to influence the “randomness” of the decision-trees. If #nf = 1 there would be

no optimisation of the information gain ∆E and the decision-trees would define a

random partitioning of the feature space. The bigger #nf the more the partitioning

will be driven by discriminating between the object classes, as for each node the

one node-test out of #nf tests that maximises the information gain ∆E is selected.

These #nf node-tests are sampled from the initial pool of node-tests P that is

created for each decision-tree.

(b) type of low-level features used: This defines the type of features x ∈ D used to

compute the response tp. It can be based on texton histograms or low-level features

2.2 Classifiers and Generative Models 37

such as RGB, HOG, filter-banks, or textons.

3. Decision-tree parameters: These parameters describe properties of the decision-trees

only.

(a) maximum depth of each tree: Experiments indicate that deeper trees tend to im-

prove performance, and thus the depth is mostly determined by computational and

memory considerations (see Section 5.4.2), but depending on the specifics of the

implementation and the number of trees in the forest it can also lead to overfitting.

Ho (1998), however, proposes to learn the trees to maximal depth, i.e. each leaf node

only contains one data point, thus resulting in 100% performance on the training

data.

(b) information gain or entropy stopping criterion: In order to avoid “over”-fitting of

the tree, i.e. partitioning of feature space areas into areas where there is no further

partitioning necessary, these two criteria can be used to stop expansion of the nodes

before the maximum depth is reached.

Classifying with the Random Forest

During testing the data is classified independently by each decision-tree. Each data point is sent

to the left or right child node depending on the evaluation of the node-test at a specific node

until it reaches a leaf node. This classification results in the assignment of the empirical class

posterior distribution to the test data point. It is often better to not use the empirical class

posteriors directly, but to weight them with the class prior probabilities. There are two main

methods to combine the multiple class posterior distributions Pi(c|x) with i ∈ {1, . . . , |RF |}:

(i) The Product of Experts (PoE) introduced by Hinton (1999) and (ii) the Mixture of Experts

(MoE) that is commonly used, e.g. Gaussian mixture models. Breiman (2001) uses a plurality

voting scheme instead, but as we want to retrieve the class posterior distribution voting is not

suitable for our work. In the following Z denotes the normalisation such that P (c|x) is a proper

probability distribution.

2.2 Classifiers and Generative Models 38

Product of Experts. The resulting class probability is modelled as the product of the

individual probabilities (in our case all decision-trees have the same weight):

P (c|x) =

∏|RF |
i Pi(c|x)

Z
.

In a sense, in a PoE each individual tree can “veto” a specific class by assigning a low

probability to it. The PoE can also be seen as a MoE in log space, which might help to

understand the conceptual differences better. Hinton (2000) argues that one advantage for

PoEs lies in the modelling of probability distributions in high dimensional feature spaces. Each

expert can focus to restrict only a subset of dimensions and the product of all the experts will

then constrain all the dimensions. The PoE can produce much sharper probability distributions

than the individual experts, this is not possible for MoEs. It seems to be important to learn

the model as a whole to ensure that not all experts agree on unobserved data [Hinton (1999)].

In the Random Forest case, however, the individual decision-trees are trained independently

and the forest is not learnt as one model. This makes the MoE more suitable for our task.

Mixture of Experts. The MoE is also called averaging classifier as the individual prob-

ability distributions are averaged:

P (c|x) =

∑|RF |
i Pi(c|x)

Z
.

Here each individual tree has a bigger influence in voting for a specific class. Amit and Ge-

man (1997) use the MoE to recognise shapes, e.g . distorted letters and digits. Biau et al. (2008)

show that the voting and averaging classifiers are consistent and also investigate the consis-

tency of Random Forests. It turns out that if the individual decision-trees are consistent the

averaging classifier is consistent as well. Ho and Kleinberg (1996) also proposes the MoE. Their

work is based on Stochastic Discrimination (SD) [Kleinberg (1990)]. Another justification for

using the averaging of decision-trees can be derived from a Bayesian view. Let us assume a

distribution P (T|T) that describes the probability for each decision-tree T to be sampled from

all possible trees given the training data T . Then the class posterior for a data point x is given

2.2 Classifiers and Generative Models 39

by:

P (c|x) =
∑
T

P (c|x, T) · P (T|T) .

Random Forests approximate this by selecting a subset of all possible decision-trees during

training and assume equal likelihood for each of those trained trees and zero probability for all

other decision-trees.

Discussion

Although Random Forests have experienced great success in the computer vision community

as well as the machine learning community in general the underlying principles don’t seem to

be fully understood [Biau et al. (2008)]. Ho (1998) investigates some of the principles that

allow Random Forests to learn arbitrarily complex decision boundaries while maintaining good

generalisation capabilities. The complex decision boundaries result in almost 100% training

accuracy which we also confirmed in our experiments. Many of these observations can be

explained by Stochastic Discrimination (SD) theory introduced by Kleinberg (1990). Klein-

berg (2000) gives a more algorithmic view of SD. Random Forests are a special case of SD

that starts with guaranteed enrichment1 and uniformity2 (if the trees are fully-split) and seek

optimisation on projectability3 [Ho and Kleinberg (1996), Ho (1998)]. Other methods start with

highly projectable classifiers with minimum enrichment and try to optimise uniformity [Ho and

Kleinberg (1996)]. Chipman et al. (2006) introduce BART - Bayesian “sum-of-trees” model,

which is similar to the MoE or boosting [Freund and Schapire (1996)], but is completely defined

by a statistical model. The model is based on decision-trees, but the training is performed by

sampling from the posterior distribution using Markov chain Monte Carlo [Bishop (2006)]. A
1Enrichment denotes the fact that the partitions of the subspace contain a larger fraction of data points

of one class than the other classes. This is achieved by the maximisation of information gain in the Random
Forest framework.

2Uniformity means that all data points of a given class must be “viewed equally” by the full set of weak
classifiers, i.e. the weak classifiers should be unbiased for any particular training point. In a sense the weak
classifiers are not really classifiers, but describe subsets of the feature space with a slightly higher than average
class distribution (enrichment). In a fully trained decision-tree each leaf node only contains one training
point thereby achieving maximal enrichment and also fulfilling uniformity as each training point is covered and
represented in exactly one leaf node.

3Projectability, also known as generalisation, refers to the fact that the weak classifiers (node-tests) should
also capture points that are considered “neighbours” of specific training points, i.e. it is important that the
“decision boundaries” are not too tight around training points. Limiting the depth of the trees can ensure this
to some extent.

2.2 Classifiers and Generative Models 40

prior is defined for each of the parameters such as the depth of the trees and the values of the

leaf nodes.

2.2.3 Topic Models

There is a range of methods that can be summarised as topic models. Their underlying idea is

to find a set of reoccurring topics given a body of documents D = {d1, . . . , dN}. For example, in

the case of text retrieval some documents might talk about penguins and related topics such as

birds and Antarctica. Others might talk about cars, racing and related things. Each document

is made up from terms of a vocabularyW = {w1, . . . , wM} and each document can be presented

using the common bag of words model where the order of words in the documents is disregarded

and the corpus can thus be described with a document-word co-occurrence matrix N . Topic

models try to identify the words that, e.g . talk about penguins, Antarctica, or cars and thus

define common topics that occur in several documents. Intuitively each document is described

as a distribution over topics and each topic defines a distribution over vocabulary words. Now

the specifics of three different topic models are introduced.

The idea of Latent Semantic Analysis (LSA) is to map the documents from the M dimen-

sional space over words onto a lower dimensional space over topics. In LSA this is performed by

singular value decomposition of the co-occurrence matrix N = UΣV t [Deerwester et al. (1990)].

Now the k vectors for the largest singular values are used to define this mapping onto the k

dimensional topic space, where each document is described by a topic weight vector and each

topic by a word weight vector. This mapping is optimal with respect to the Frobenious norm.

Lee and Seung (1999) use non-negative matrix factorisation to learn parts of objects. This

imposes different constraints on the decomposition than LSA for example.

Hofmann (2001) introduce a probabilistic extension to this feature reduction – proba-

bilistic Latent Semantic Analysis (pLSA). Using the common notation for pLSA we have

P (w|d) =
∑

z P (w|z)P (z|d) where z are the topics. This factorisation is visualised in Fig-

ure 2.9. Each topic represents a distribution of words occurring in this topic. Those topic

word distributions P (w|z) are learnt together with the document topic distributions P (z|d)

by minimising the Kullback-Leibler divergence of the model’s document word distribution

P (w, d) = P (d)
∑

z P (w|z)P (z|d) to the real document word distribution N given by the

2.2 Classifiers and Generative Models 41

=

d z d

P(w|z)P(w|d)

P(z|d)

zww

Figure 2.9: pLSA models word frequencies in a document P (w|d) as topics in a document
P (z|d) given the word distribution for a topic P (w|z). pLSA then minimises this equation with
respect to the KL divergence.

documents. The model parameters P (w|z), P (z|d) and P (d) are estimated using Expectation

Maximisation (EM) [Bishop (2006)]. EM alternates an expectation (E) step where the pos-

terior probabilities are computed for the latent variables given the current parameters and a

maximisation (M) step where the model parameters are updated given the new posteriors for

the latent variables.

Blei et al. (2003) describe latent Dirichlet allocation (LDA), a generative probabilistic model

for collections of discrete data. LDA is a three-level hierarchical Bayesian model, in which each

item of a collection is modelled as a finite mixture over an underlying set of topics. The au-

thors compare the structure and performance of LDA to the unigram model4, the mixture

of unigram model and pLSA. LDA is far less sensitive to over-fitting than pLSA and mix-

tures of unigrams. The paper also provides a good geometrical representation of those models.

One improvement over pLSA is that LDA provides a probabilistic model at the level of doc-

uments. pLSA does not model a probabilistic distribution of the topics of documents, which

leads to a problem when assigning probabilities to a document that is not contained in the

training set. Blei et al. (2003) also introduces a method to estimate the parameters (approxi-

mately). The method uses convexity-based variational inference and works in an EM manner.

Teh et al. (2004) introduce hierarchical Dirichlet Processes (HDP) which avoid the need to ex-

plicitly specify the number of topics as pLSA and LDA do and additionally model relationships

between topics.
4Under the unigram model the words in a document are drawn independently from a single multinomial

distribution.

2.2 Classifiers and Generative Models 42

Discussion Topic models can be seen as dimensionality reduction techniques. However, the

newer versions such as LDA and HDP are full generative models. In contrast to other dimen-

sionality reduction techniques as principal component analysis (PCA) and also LSA they are

able to model non-linear dependencies between topics and documents.

2.2.4 Energy Minimisation for Multi-Label Image Segmentation

Image segmentation as introduced in Chapter 1 can be formulated in terms of an energy min-

imisation problem. The idea is to find the optimal segmentation into constituent object regions

given a cost or probability for each pixel to belong to a certain object-class or not. This

corresponds to assigning an object class-label to each pixel, which then defines the image seg-

mentation. The energy formulation takes into account that neighbouring pixels tend to belong

to the same object unless there are strong gradient edges in the image (discontinuity preserving

energies).

This multi-label problem can be modelled using Markov Random Fields (MRF). A MRF

models the joint probability of an image and its labels P (c, I) in a generative framework [Geman

and Geman (1984), Li (2001), He et al. (2004)]. One problem with MRFs is the inherent estima-

tion of the partition function, as we eventually want to retrieve P (c|I). A Conditional Random

Field (CRF) [Lafferty et al. (2001)] models P (c|I) directly. Unlike the MRF the CRF model

can depend on arbitrary non-independent characteristics of the observation [He et al. (2004)],

whereas the MRF as a generative model is forced to account for dependencies in the image.

He et al. (2004) describe an approach to incorporate contextual features into the CRF for

the task of image segmentation by means of a so called “multiscale conditional random field”

(mCRF).

In this work we are interested in graphical models that capture the pixel structure of images.

Therefore, we model an image I as a CRF where each pixel corresponds to a node and each

node is connected to its four neighbours. This defines an undirected graph with edges {ij ∈ I},

where i and j denote the pixels in the image. Different neighbourhoods such as an eight

neighbourhood can be used too. The labelling problem can then be formulated as an energy

minimisation problem [Boykov et al. (2001)], where E(c, I) corresponds to the negative log-

2.2 Classifiers and Generative Models 43

likelihood (− log P (c|I)) and is modelled as follows:

E(c, I) = Esmooth(c) + Edata(c, I) (2.7)

where Esmooth measures the smoothness of the labelling c and Edata the disagreement between

c and the observed data I. The smoothness term is often described in the form of pairwise en-

ergies between the neighbouring pixels, i.e. Esmooth(c) =
∑

ij Vij(ci, cj) where Vij(ci, cj) defines

the cost of disagreeing labels for neighbouring pixels. Instead of pairwise interactions higher

order cliques have been used in the past, but the lack of efficient optimisation techniques limited

their applicability. The minimisation of this energy function (i.e. the negative log-likelihood)

corresponds to the maximum posterior probability (MAP) estimate and the restriction to pair-

wise energies implies the Markov property, i.e. P (ci|I, cj, i 6= j) = P (ci|I, cj,i ∼ j) where i ∼ j

denotes that i and j are neighbours.

Discussion Given the energy formulation in (2.7) there are various recent algorithms that

can be used for finding the minimum energy labelling corresponding to the MAP estimate. We

now discuss a few common techniques and their relations.

Lets first look at a simpler problem with a tree structured graph instead of the grid struc-

ture normally used for image labelling. Inference in these models can be performed exactly

using variations of dynamic programming. The first example for dynamic programming is the

well known Viterbi algorithm [Viterbi (1967)]. The so called max-product algorithm5 is another

more general version. See Cormen et al. (2001) for a more recent introduction. Similar methods

can be used to minimise these energy formulations in arbitrary graphs. The junction tree algo-

rithm [Lauritzen and Spiegelhalter (1988)] is a method to perform exact inference in arbitrary

graphs, but its complexity grows exponentially with the size of the largest clique for discrete

variables. Loopy belief propagation is the direct extension of the max-product algorithm to

general graphs, but the quality of the solutions and its efficiency is limited. See Bishop (2006)

for a good overview of this area. We use convergent (or sequential) tree-reweighted message

passing (TRW-S) [Kolmogorov (2005)] in Section 5.4.4 that is based on the work of Wain-

wright et al. (2002). TRW-S is related to message passing algorithms such as belief propaga-
5In Bishop (2006) it is called max-sum algorithm as the product is often replaced by a sum over the logarithm

of the probabilities to avoid numerical problems.

2.3 Object Recognition 44

tion and although it is not guaranteed to find the global optimum on multi-label problems with

discontinuity preserving pairwise energies it is able to provide a lower bound on the energy in

addition to a very good local minimum.

Another direction of minimisation methods is based on graph-cuts (min-cut/max-flow algo-

rithms) and uses the α-expansion or αβ-swap methods for minimisation of multi-label problems

[Boykov et al. (2001), Kolmogorov and Zabih (2004)]. Recent work of Kohli et al. (2007, 2008)

shows how certain higher order clique potentials can also be minimised in this framework and

the authors underline the strength of their approach on an example of image segmentation.

Graph-cuts methods do not guarantee a global optimum, similar to TRW-S, for general pair-

wise energies, but recent advances such as quadratic pseudo-boolean optimisation (QBPO)

[Rother et al. (2007)] are able to deal better with non-submodular energies.

Szeliski et al. (2008) gives a comprehensive study of several energy minimisation methods

and evaluates them on real world problems. TRW-S proved itself very useful in those exper-

iments, and does not require constraints on the energy function as move making graph-cuts

methods do in order to guarantee optimal moves.

2.3 Object Recognition

The goal of object recognition systems is to recognise objects belonging to a set of (usually)

specified object classes. In the simplest setup this would just mean the classification of a

whole image, i.e. returning if a specified object-class is present or not. Object detection refers

to the more challenging task of simultaneously detecting the position (e.g . bounding box) of

the object as well as its class. Recently the pascal Visual Object Class (VOC) challenges

were organised to provide publicly available image datasets together with annotations and

a well defined evaluation protocol [Everingham et al. (2006, 2007, 2008)]. This facilitated the

comparison of different algorithms on a standard testbed and the corresponding reports present

the wide range of submitted methods.

Some of the more successful object detectors are crafted towards the detection of single

object-classes, such as the face detector by Viola and Jones (2001). It provides a very fast

face detection system based on AdaBoost [Friedman et al. (2000)]. Their weak classifiers are

Haar like differences of the sum of pixel intensities in adjacent rectangles. The resulting strong

2.4 Segmenting Images into Object Regions 45

classifier is integrated into a cascade of classifiers. A first simple classifier discards non-face

regions with a low false negative rate and thereby reduces the computational cost. Then a

better computationally more expensive classifier is applied to the remaining sub-images in the

next out of possibly many steps. Another well known object detector for one specific class is

the person detector by Dalal and Triggs (2005). As it was already pointed out in Section 1.1 it

is often helpful or even necessary to take context into account. Not many current approaches

explicitly model context for object recognition. However, He et al. (2004), for example, use

context in a CRF framework to improve image segmentation. Kumar and Hebert (2005) use

a hierarchical conditional random fields to model between object context (e.g . keyboard and

mouse next to a monitor) and region context (e.g . sky tends to be at the top of an image).

Rabinovich et al. (2007) also use a CRF based model that aims to maximise the object label

agreement with respect to contextual relevance and Singhal et al. (2003) use the detection of

typical attributes, such as grass, sky, water or snow, and their spatial relationships in the images

for scene understanding. The work of Sivic et al. (2005) aims to discover objects in unlabelled

image sets and thus represents a slightly different area of object recognition. They use the bag

of words representation on vector quantised SIFT-like feature descriptors and employ the pLSA

method to discover topics/object-classes. After the object-classes are discovered the distinctive

visual-words for each class can be identified in the images, thence describing the rough location

of the objects. Many of the methods already introduced in Section 2.1.2 also focus on the

object detection task.

2.4 Segmenting Images into Object Regions

As a significant part of this thesis focuses on semantic image segmentation, i.e. segmenting an

image into its constituent semantic regions and automatically labelling each region as belonging

to an object-class, we now give an overview of related work. For image segmentation it needs

to be distinguished between bottom-up and top-down approaches. Bottom-up segmentation

usually refers to segmentation methods that operate purely based on the image content, and

take into account image colour, colour gradients and change of texture. Segmenting natural

images in a bottom-up fashion automatically has a long history, but has not been that successful

– see Sharon et al. (2001) for a recent example and earlier references. A purely bottom-up

2.4 Segmenting Images into Object Regions 46

segmentation will tend to separate the image into many different regions rather than recognising

an object, e.g . cow, as a single coherent entity. We give a short introduction of a few bottom-

up segmentation methods in Section 4.5.1 and focus on top-down approaches in the remainder

of this section. Many of the methods described here employ the previously introduced CRF

models and various energy minimisation techniques.

There are a few distinctions to be made about image segmentation. Some methods just

return a foreground background segmentation. Other methods generalise the segmentation

problem and try to return more complete descriptions such as image parse trees. Storkey

and Williams (2002), for example, use so called position encoding dynamic trees to perform

image labelling, a generalisation of the segmentation problem where an image parse tree is

generated for the image. Zhu et al. (2007) is related to image parsing and uses a hierarchical

“graph” structure for detection, segmentation and parsing of articulated deformable objects.

Li et al. (2009) propose a hierarchical generative model for the simultaneous segmentation of

scenes as well as recognition of objects and assignment of tags to the image. Some people use

multiple bottom-up segmentations to define larger image regions that facilitate the learning

of for example consistently re-occurring objects as in Russell et al. (2006). The following two

paragraphs focus on interactive image segmentation and more automatic methods that aim to

segment the image into its object regions, object segmentation.

Interactive image segmentation. Image segmentation is an important problem in com-

puter vision and has been addressed in many works. Interactive segmentations describes a

semi-automatic approach where the user selects fore- and background using a rectangular mask

or a few brush strokes. This defines the background and more specifically a colour histogram

of the background. An energy function that takes the posterior of each pixel given the his-

togram as well as intensity differences of neighbouring pixels into account is defined. Boykov

and Jolly (2001) use graph-cuts to find a global minimum of this energy function and thus a

segmentation into foreground and background regions. Rother et al. (2004) extend this version

of interactive graph-cuts by introducing an iterative procedure. After the image is segmented

new priors (colour histograms) for foreground and background are computed and this updated

energy function is minimised. Criminisi et al. (2008) propose an efficient approximate energy

minimisation technique for the fast segmentation of n-dimensional images.

2.4 Segmenting Images into Object Regions 47

Object driven segmentation. Some of the object recognition algorithms introduced in

Section 2.1.2 provide rough object segmentations: Shotton et al. (2005), Opelt et al. (2006)

based on the boundary fragments or Leibe et al. (2004) by considering all patches, that contain

a specific pixel, and their contribution to the object detection hypothesis.

Now we first present object segmentation methods that make use of the previously in-

troduced energy formulation and then introduce work that makes strong use of bottom-up

segmentations. Finally, a quick overview of some ideas to combine bottom-up and top-down

segmentations is provided.

TextonBoost [Shotton et al. (2006)] describes an approach of learning a discriminative model

of object classes, which incorporates appearance, shape and context information efficiently.

The shape filter represents shape, texture and context and is learnt by a version of AdaBoost

[Friedman et al. (2000)], which uses shared features. A conditional random field is used to

“connect” the shape, colour and edge features to provide the final segmentation. Whereas

TextonBoost focuses on the estimation of the unary term using a strong discriminative boosting

classifier, Kumar et al. (2005) describe a method that uses top-down shape information in the

form of pictorial structures and unmodelled information in the form of pixels that are similar to

the objects’ pixels. A Markov random field (MRF) is formulated to combine both of these parts

and the inference in this so called Object Category Specific MRF is performed by a graph-cuts

algorithm (see Section 2.2.4 for details). Verbeek and Triggs (2008) use a CRF approach that

incorporates local (SIFT based textons) and global image features. They also show how their

method can handle missing groundtruth labels during training. These approaches show that

in addition to a strong classifier as in TextonBoost it is useful to also incorporate more global

shape as in Kumar et al. (2005) or global image features as in Verbeek and Triggs (2008).

The following two approaches make use of image inherent low-level information by means

of bottom-up segmentations which group pixels that are likely to belong to the same object

together, thereby simplifying inference of the object regions. Csurka and Perronnin (2008)

use sparse logistic regression to classify image patches that are described by a soft assignment

to textons, where the quantisation is performed using a Gaussian mixture model. Bottom-up

segmentation is used in order to get a more consistent pixelwise classification. See Section 4.5 for

our work on combining bottom-up segmentation with top-down classification. Kohli et al. (2008)

2.5 Conclusion 48

also uses a CRF based approach and focuses on the combination of bottom-up segmentation

using higher order cliques defined by multiple such segmentations. TextonBoost is used to

define the unary potentials. Lempitsky et al. (2008) use a combination of branch and bound

and graph-cuts to find global optima for a wide range of energies. They also apply their method

to the segmentation problem.

Rather than the CRF based methods, which focus on “classifiers” that return good unary

potentials (Edata), the methods in this paragraph are more related to object detection methods

as they detect parts of the object and build on those detections to infer the segmentation.

Borenstein and Ullman (2002) introduce a top-down approach that uses pre-learnt object frag-

ments that consist of a template and a labelling. During testing the objects in the image are

“covered” with those templates, thus defining a segmentation. The work of Shotton et al. (2005),

Opelt et al. (2006) uses a similar approach where the fragments are strict edge fragments rather

than patch based as in Borenstein and Ullman (2002). The patch based approach is similar to

Leibe et al. (2004), who are also able to retrieve a segmentation. Borenstein and Ullman (2004)

is an extension of Borenstein and Ullman (2002) and does not require segmented training

data or bounding boxes, but can learn the fragment templates from unsegmented training im-

ages. Borenstein et al. (2004) combine bottom-up and top-down segmentation by minimising

a global energy function using the max-product algorithm. In addition to the image segmen-

tation this also results in a confidence map that can point out regions which require further

refinement. All these methods focus on the segmentation of one object-class (e.g . horse) versus

the background-class, but their ideas could contribute to multi-class image segmentation and

supplement methods that are based on strong unary potentials and CRFs.

2.5 Conclusion

The ultimate goal of visual content analysis would be to explain each pixel in an image. In

order to reach this goal it seems inevitable to take global information into account. Many of

the current approaches work locally (e.g . sliding-window based) and do not take the global

context into account. For example the person detector Dalal and Triggs (2005) or face detector

[Viola and Jones (2001)], albeit these are very successful demonstrations of the possibilities

local methods have. Some of the methods like Shotton et al. (2005), Opelt et al. (2006),

2.5 Conclusion 49

Leibe et al. (2004) and Fergus et al. (2005b) aim to model object shape more explicitly, i.e. not

only local appearance, however systems that are able to give a comprehensive understanding

of the whole image content, including a hierarchical representation of objects and their parts

are yet to come.

After the introduction of the datasets that are used for the segmentation work in this thesis,

we present our extensions and variations to the segmentation algorithms discussed here.

Chapter 3

Object Segmentation Datasets

This chapter introduces the datasets that are used to evaluate the semantic segmentation

methods of this thesis. It is very important to have good standardised datasets that are

used in other work, such that results can be compared to other methods without the need

of implementing them. The two datasets discussed here are widely used for the semantic

segmentation task and a comparison to other work is therefore easily possible.

First we introduce the MSRC (Microsoft Research Cambridge) datasets. The MSRC

datasets [Criminisi (2004)] consist of a main dataset featuring 21 object-classes and a 9-class

subset. Next, the more recent and much more challenging datasets suitable for object segmen-

tation are presented. They were created for the PASCAL visual object-class (VOC) challenge

[Everingham et al. (2006, 2007, 2008)]. Both the VOC2007 and VOC2008 dataset versions in-

clude labelled groundtruth that assigns one out of the 20 object-class-labels to each pixel, and

assigns background if none of the classes match. Finally, we present the performance measures

that are used throughout this thesis to evaluate our algorithms and to compare to previous

work.

3.1 MSRC Datasets

The MSRC dataset [Criminisi (2004)] was introduced in Winn et al. (2005). The full dataset

provides labelling for 21-classes. Figure 3.1 gives an idea of the kind of pixelwise segmentation

that is available for the training and test images of this dataset. The whole dataset includes

labelled objects of the classes aeroplane, bicycle, bird, boat, body, book, building, car, cat, chair,

3.1 MSRC Datasets 51

image groundtruth image groundtruth
plane bike bird boat body book bldng car cat chair cow dog face flower grass road sheep sign sky tree

| | | | | | | | | | | | | | | | | | | |

Figure 3.1: Rough pixelwise groundtruth segmentations and the MSRC images are
shown. Each object-class is represented by a unique colour. Object boundaries and classes not
belonging to one of the 21 object-classes are marked as “void” (black). For each of the classes
aeroplane, bicycle, bird, boat, body, book, building, car, cat, chair, cow, dog, face, flower, grass,
road, sheep, sign, sky, tree, water at least one example is given.

3.1 MSRC Datasets 52

0

10

20

30

40

50

60

70

80

90

100

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at
bo

dy
bo

ok
bu

ild
in

g
ca

r
ca

t ch
ai

r co
w

do
g

fa
ce

flo
w

er

grass

ro
ad

sh
ee

p
si

gn
sk

y
tr

ee
w

at
er

21−class train: # images showing object−class

im
ag

es
 s

ho
w

in
g

>
=

1
ob

je
ct

0

10

20

30

40

50

60

70

80

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at bo
dy

book

bu
ild

in
g

ca
r

ca
t

ch
ai

r co
w

do
g

fa
ce

flo
w

er
gr

as
s

ro
ad sh

ee
p

si
gn

sk
y tr

ee
w

at
er

21−class train: mean object area in image

ob
je

ct
−

cl
as

s
pi

xe
ls

 in
 %

 o
f i

m
ag

e−
si

ze

0

10

20

30

40

50

60

70

80

90

100

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at
bo

dy
bo

ok
bu

ild
in

g
ca

r
ca

t ch
ai

r
co

w
do

g
fa

ce
flo

w
er

grass

ro
ad

sh
ee

p
si

gn
sk

y
tr

ee
w

at
er

21−class test: # images showing object−class

im

ag
es

 s
ho

w
in

g
>

=
1

ob
je

ct

0

10

20

30

40

50

60

70

80

90

100

ae
ro

pl
an

e bi
cy

cl
e

bi
rd

bo
at

bo
dy

book

bu
ild

in
g ca

r
ca

t
ch

ai
r

co
w

do
g

fa
ce

flo
w

er
gr

as
s

ro
ad

sh
ee

p
si

gn
sk

y tr
ee

w
at

er

21−class test: mean object area in image

ob
je

ct
−

cl
as

s
pi

xe
ls

 in
 %

 o
f i

m
ag

e−
si

ze

0

10

20

30

40

50

60

70

ae
ro

pl
an

e

bi
cy

cl
e

bu
ild

in
g

ca
r

co
w

fa
ce

grass

sk
y

tr
ee

9−class train: # images showing object−class

im

ag
es

 s
ho

w
in

g
>

=
1

ob
je

ct

0

10

20

30

40

50

60

70

ae
ro

pl
an

e

bi
cy

cl
e

bu
ild

in
g

ca
r

co
w

fa
ce

grass

sk
y

tr
ee

9−class train: mean object area in image

ob
je

ct
−

cl
as

s
pi

xe
ls

 in
 %

 o
f i

m
ag

e−
si

ze

0

10

20

30

40

50

60

70

ae
ro

pl
an

e

bi
cy

cl
e

bu
ild

in
g

ca
r

co
w

fa
ce

grass

sk
y

tr
ee

9−class test: # images showing object−class

im

ag
es

 s
ho

w
in

g
>

=
1

ob
je

ct

0

10

20

30

40

50

60

70

ae
ro

pl
an

e

bi
cy

cl
e

bu
ild

in
g

ca
r

co
w

fa
ce

grass

sk
y

tr
ee

9−class test: mean object area in image

ob
je

ct
−

cl
as

s
pi

xe
ls

 in
 %

 o
f i

m
ag

e−
si

ze

Figure 3.2: Object-class statistics for the MSRC datasets. Shown are the number of
images that contain each object-class and the average number of object-class pixels in percent
of the number of image pixels (± one standard deviation indicated by the black error-bars
around the blue mean).

3.2 Pascal Visual Object-Class Dataset 53

cow, dog, face, flower, grass, road, sheep, sign, sky, tree, water. Pixels at object boundaries or

showing object-classes not part of the aforementioned 21 classes are labelled “void” and ignored

during classification. The images are split into three sets: 276 training-, 256 test-, and 59

validation-images. The number and size of the object regions are shown in Figure 3.2.

This 21-class dataset is based on a 9-class dataset that was introduced earlier and contains

the following object-class-labels: building, grass, tree, cow, sky, aeroplane, face, car, bicycle.

It provides a training and test set each containing 120 images. We also use a subset of the

9-class dataset consisting of 6-classes (cow, sheep, dog, cat, bird, grass) in Chapter 4. This small

dataset consists of 125 training and 50 test images. The detailed statistics for each object-class

are also shown in Figure 3.2.

This dataset was one of the earliest widely available datasets that provided a consistent

pixelwise groundtruth labelling suitable for the evaluation of the semantic segmentation task.

The images contained in the MSRC dataset are not too challenging (i.e. good lighting, little

clutter) and often display one object in the centre of the image. The groundtruth labelling

“overdraws” foreground objects (e.g . cow, person, car, bicycle), meaning their annotation often

overlaps the object boundaries and “spills” into the background (e.g . grass, road). This can be

seen in Figure 3.5 on page 56 that shows the groundtruth masked cow region in the middle.

The VOC dataset introduced in the next section tries to overcome some of these problems.

3.2 Pascal Visual Object-Class Dataset

The PASCAL Network of Excellence on Pattern Analysis, Statistical Modelling and Compu-

tational Learning organised object recognition challenges and simultaneously released image

(V isual Object-C lass) datasets with groundtruth labelling suitable for the evaluation of object

detection and segmentation methods. There are currently two versions which include manually

labelled groundtruth segmentation [Everingham et al. (2007, 2008)]. In this thesis we use the

VOC2007 dataset which contains 20 object-classes and the background class. The provided

images are divided into three sets: the training set consists of 209 images, the validation set

of 213 images, and the test set of 210 images. The number of images containing a specific

object-class as well as statistics about the size of the objects is presented in Figure 3.4.

See Figure 3.3 for example images of VOC2007 together with their groundtruth segmen-

3.2 Pascal Visual Object-Class Dataset 54

image groundtruth image groundtruth
plane bike bird boat bottle bus car cat chair cow table dog horse mbikeperson plant sheep sofa train tv

| | | | | | | | | | | | | | | | | | | |

Figure 3.3: Pixelwise groundtruth segmentations for the VOC2007 dataset are shown
together with the images. Each object-class is represented by a colour. Object boundaries
(“void”) are marked beige. For each of the classes aeroplane, bicycle, bird, boat, bottle, bus,
car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train,
tvmonitor and background at least one example is given.

3.3 Performance Measures 55

0

10

20

30

40

50

60

70

80

90

100

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at bo
ttl

e
bu

s
ca

r
ca

t
ch

ai
r

co
w di
ni

ng
ta

bl
e

do
g

ho
rs

e
m

ot
or

bi
ke

person

po
tte

dp
la

nt
sh

ee
p so

fa
tr

ai
n

tv
m

on
ito

r

VOC2007 train: # images showing object−class

im
ag

es
 s

ho
w

in
g

>
=

1
ob

je
ct

0

10

20

30

40

50

60

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at
bo

ttl
e

bus

ca
r

ca
t

ch
ai

r
co

w
di

ni
ng

ta
bl

e
do

g
ho

rs
e

m
ot

or
bi

ke
pe

rs
on

po
tte

dp
la

nt
sh

ee
p

so
fa tr

ai
n

tv
m

on
ito

r

VOC2007 train: mean object area in image

ob
je

ct
−

cl
as

s
pi

xe
ls

 in
 %

 o
f i

m
ag

e−
si

ze

0

10

20

30

40

50

60

70

80

90

100

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at
bo

ttl
e

bu
s

ca
r

ca
t ch

ai
r

co
w di
ni

ng
ta

bl
e

do
g

ho
rs

e
m

ot
or

bi
ke

person
po

tte
dp

la
nt

sh
ee

p
so

fa
tr

ai
n

tv
m

on
ito

r

VOC2007 test: # images showing object−class

im

ag
es

 s
ho

w
in

g
>

=
1

ob
je

ct

0

10

20

30

40

50

60

ae
ro

pl
an

e
bi

cy
cl

e
bi

rd
bo

at
bo

ttl
e

bus

ca
r

ca
t

ch
ai

r
co

w
di

ni
ng

ta
bl

e
do

g
ho

rs
e

m
ot

or
bi

ke
pe

rs
on

po
tte

dp
la

nt
sh

ee
p

so
fa

tr
ai

n
tv

m
on

ito
r

VOC2007 test: mean object area in image

ob
je

ct
−

cl
as

s
pi

xe
ls

 in
 %

 o
f i

m
ag

e−
si

ze

Figure 3.4: Object-class statistics for VOC2007. Shown are the number of images that
contain each object-class and the average number of object-class pixels in percent of the number
of image pixels (± one standard deviation indicated by the black error-bars around the blue
mean).

tation. These images contain significantly more clutter than the ones in the MSRC datasets.

Also, some of the object-classes are very difficult (e.g . potted-plant, dining-table). Furthermore,

the addition of the background class makes the segmentation task much more challenging, as

it summarises all objects not belonging to one of the 20 classes. This dramatically increases

the range of appearances for the background class and potentially leads to more confusion with

other classes.

For completeness it should be mentioned that the VOC datasets also provide groundtruth

for the object detection and classification task. The groundtruth annotations contain bound-

ing boxes around objects together with the class-labels and a rough orientation description

(e.g . rear, front, facing left, facing right) as well as further information, for example if the

object is truncated or fully visible.

3.3 Performance Measures 56

Groundtruth Region-Level Classification: Pixelwise Classification:

Li =label for region; Preg =
∑n

i=1

δ(Ri,Li)
n

Ppix =
N∑
i=1

δ(pi, li)

N

Pavg =
C∑
c=1

Ppix(c)

C

li =label for pixel; n = number of groundtruth
regions N =total number of pixels

Figure 3.5: Visualisation of performance measures. The left column illustrates the two
types of labelling that are available: (i) region labels and (ii) pixel labels. The middle column
shows an example of a cow region from the MSRC dataset and the corresponding region-level
performance measure Preg. The right column specifies the performance measure Ppix when each
pixel is evaluated independently (Ppix(c) denotes the pixelwise classification performance for
one object-class only) and Pavg for the average class performance. δ denotes the Kronecker
delta. The middle images also shows how the groundtruth labelling for the MSRC dataset
often overlaps the object boundaries and “spills” into the background.

3.3 Performance Measures

Here we introduce the performance measures that are commonly used on these datasets and we

report the performance of our algorithms based on these measures in the following chapters.

There are three different kinds of performance measure that are used throughout this work

to evaluate the semantic segmentation experiments. Region-level classification is based on the

groundtruth regions and can therefore only be used for a preliminary evaluation. The other

two measures take every pixel1 into account (pixelwise classification) and only differ in how

correct and incorrect classifications and object-class specific classifications are weighted. For

the VOC2008 challenge another measure was introduced, the intersection/union measure also

referred to as the overlap score, but it has not been widely used in other work yet.
1Pixels labelled as “void” are never taken into account. For the MSRC datasets these are all areas shown

in black in the groundtruth images (i.e. pixels near the object boundaries, and for object-classes that are not
included in the list). For the VOC datasets only a few pixel wide area around the objects and very small objects
or ambiguous pixels are marked “void”.

3.3 Performance Measures 57

3.3.1 Region-Level Classification

Region-level classification was introduced in Winn et al. (2005) and poses a simpler classification

problem. Instead of classifying a whole image (e.g . Csurka et al. (2004)), here sub-regions that

contain only one object are classified. As this method relies on the groundtruth regions to

define the object regions (see Figure 3.1 on page 51 and Figure 3.3 on page 54) it is not suitable

to evaluate segmentation results, but is used for preliminary evaluations. Figure 3.5 gives an

example of those groundtruth regions on the left. A label Li is assigned to each such region, and

during classification the agreement of the classification for a specific region Ri is compared to

this label (δ denotes the Kronecker delta). The number of all correct assignments normalised by

the total number of regions provides the performance measure we use, as shown in the middle

column of Figure 3.5.

3.3.2 Pixelwise Classification

This measure is more suitable to evaluate our ultimate goal of classifying each pixel in the image

correctly, i.e. assigning an object class-label to each pixel. Figure 3.5 visualises this idea in the

right column as Ppix. The pixelwise classification performance is computed as the percentage

of all correct assignments of class-labels to pixels pi (where li denotes the groundtruth label for

this pixel). Pixels labelled as “void” are not considered during this evaluation. In the case of

the MSRC datasets this disregards all boundary pixels and pixels that do not belong to one of

the 21 object classes. For the VOC datasets all pixels need to be assigned a label (aside from

a small area around each object), either one of the 20 object class-labels, or the background

label.

3.3.3 Average Class Performance

This measure relates to the pixelwise classification performance, but computes the average

of the per object-class c pixelwise accuracies Pavg(c) (i.e. the percentage of e.g . cow pixels

classified as cow). This average class performance reduces the bias towards object-classes that

cover more pixels in the test-data than others. In the case of the VOC datasets this is true for

the background class for example.

3.4 Summary 58

3.3.4 Average Precision

Average precision refers to the average precision from recall 0 to 1. In order to retrieve precision

recall curves the algorithm returns a ranked list based on its confidence that the object-class is

present in the image or not. Recall is then defined as

r =
#positive images returned
#total positive images

and the precision is defined as

p =
#positive images returned

#images returned

where “images returned” corresponds to the position in the ranked list. These measures are

computed for each position in the ranked list, i.e. each recall value r between 0 and 1, to define

a precision-recall curve.

3.4 Summary

In this chapter we introduced two image datasets: the MSRC dataset and the VOC dataset.

Both are widely used in the computer vision community. We focus on the MSRC datasets in

Chapter 4 and Chapter 5, but also report results for the VOC2007 dataset in the latter.

The MSRC datasets have been used in various papers to evaluate object segmentation

methods. Winn et al. (2005) introduce this dataset and evaluate the results of their method

using the region-level classification described in Section 3.3.1. Shotton et al. (2006), Csurka and

Perronnin (2008), Shotton et al. (2008), Verbeek and Triggs (2008) use the MSRC dataset to

evaluate their semantic segmentation methods and we compare to their results in the following

chapters.

Shotton et al. (2008), Csurka and Perronnin (2008) both report results on the challenging

VOC2007 dataset. Everingham et al. (2007, 2008) discusses the methods submitted to the

challenge and reports the newest submitted results. The performance for the image classification

and object detection tasks are reported in average precision (AP). The top performing methods

in Everingham et al. (2007, 2008) reach around 80%-90% AP for “easier” classes, e.g . airplane

3.4 Summary 59

and person. The more difficult classes are recognised with 30%-40% AP, e.g . bottle, dining

table, or potted plant. The performance of the detection task is more difficult to be interpreted

intuitively and we refer to the reports for details.

Chapter 4

Semantic Segmentation via Texton

Models

This chapter explores semantic image segmentation approaches, as defined in Section 2.4, based

on texton models, whose basics were introduced in Section 2.1.2. Here we focus on an approach

known as pixelwise classification, that assigns an object-class-label to each individual pixel of

an image. We investigate the two fundamental parts of such an image segmentation system:

(i) the object-class models together with a suitable classifier; (ii) the context around each pixel

that is used to describe that pixel. We suggest a method that assigns a class-label to each image

pixel separately. The focus lies on the efficiency and simplicity of the proposed method. We

compare the new proposed class models to comparable exemplar1 based models with various

distance measures in the nearest neighbour framework and show that our proposed model,

together with the Kullback-Leibler divergence measure, corresponds to a generative model that

returns the classification with the maximum a posteriori probability.

First we give an overview of the components involved in a texton based segmentation algo-

rithm in Section 4.1 and introduce the role played by the two main components (i) object-class

model and (ii) pixel context. This sets out the basic nearest neighbour based classifier and our

proposed compact version of it, which is explained in full detail in Section 4.2. Furthermore,

the crucial question of the image content around the pixel that is used during the classification

step is defined and two solutions are given: sliding-window based context, and context extrac-

tion based on bottom-up segmentation. Both possibilities will be explored in the experimental
1An exemplar describes one single object-class region in a training image.

4.1 Texton Based Segmentation Algorithm 61

section 4.3 and in 4.5. In Section 4.4 we introduce extensions to this baseline that overcome

some of the restrictions inherent to the sliding-window based context selection.

4.1 Texton Based Segmentation Algorithm

This section introduces the basic segmentation algorithm. In this chapter we use the textons

as, introduced in Section 2.1.2 for the image description, and then focus on the specifics of

learning the classifier and the classification step which are both based on texton histograms.

Section 4.1.1 shortly summarises the learning of the classifier, followed by Section 4.1.2 which

describes different methods to define the pixel context necessary for a pixelwise classification

and greatly influences the performance of the classifier. A range of distance measures for the

proposed nearest neighbour like framework is introduced in Section 4.1.3.

4.1.1 Texton Histogram Models

We model the training data with distributions over textons as described in Section 2.1.2. The

texton features are computed densely, i.e. a texton ID is assigned to each pixel location.

We build on the previously introduced steps. After a vocabulary of V textons was learnt

by k-means clustering on the features extracted from the training images, it is possible to

associate each pixel position in the training images with the closest texton from the vocabulary.

Now histograms over textons qi for each of the training regions (exemplars) defined by the

groundtruth labelling are computed in the learning step. The questions of how to model the

object-classes and the nature of the pixel context, define the two main areas of focus for this

chapter. The two models investigated are based on

1. storing those exemplar histograms qi separately for standard nearest neighbour (k-NN)

classification (see Section 2.1.2), or

2. combining all exemplar regions for an object-class to produce compact and yet discrimi-

native models of object categories, called single-histogram class models (SHCMs).

4.1 Texton Based Segmentation Algorithm 62

(a) groundtruth for cow and grass masked region (region-level classification)

(b) image and example sliding-windows masked region (pixelwise classification)

(c) bottom-up segmentation masked segment

Figure 4.1: Pixel-context. The three different types of context regions used in our experi-
ments: (a) the manually segmented groundtruth on the left and the masked cow region using
the blue region to compute h; (b) a sliding-window (red) defines the test region that is used
to estimate h in the sliding-window based pixelwise classification; (c) bottom-up segmentation
defines pixel-context.

4.1.2 Context Regions for Histogram based Classification

Before the actual classification is performed a query-histogram h needs to be computed. This

histogram describes the context of the pixel p that is being classified. We explore three different

approaches to defining this pixel-context. Figure 4.1 visualises the three spatial regions that

are evaluated in this chapter and described in the following:

4.1 Texton Based Segmentation Algorithm 63

Groundtruth regions: The first method uses the groundtruth regions defined by the manual

labelling. Figure 4.1(a) gives an example. The query-histogram is computed for all

pixels of one object groundtruth region. This means that the object contained in that

region is classified. This method is only used to compare our class model to previous

work [Winn et al. (2005)] and to evaluate the proposed method together with k-NN on a

simpler problem. We refer to it as region-level classification.

Sliding-window: The second method uses a sliding-window sp centred around pixel p to

compute the query-histogram h. The sliding-window extends w pixels from the centre

pixel into each direction, thus it is of size (2 · w + 1)2 pixels. At the image borders the

sliding-window is cropped by the image. This method is used to assign a class-label to

the centre pixel p of the window sp, and therefore results in a pixelwise classification.

Figure 4.1(b) gives an example for a sliding-window with w = 12.

Bottom-up segmentation: The third method uses an image segmentation Si, where each

segment defines the image region to be classified. This image region defines the context

of each pixel that is part of the region, and so all pixels in this region will be assigned

the same class-label. This method is described in detail in Section 4.5, where we will

also illustrate how multiple bottom-up segmentations can be combined to improve the

classification.

4.1.3 Classification

The query-histogram is compared to the model-histograms as in Section 2.1.2 and the closest

exemplar histogram according to a distance measureD is found. This corresponds to the nearest

neighbour framework, but the focus of this chapter lies on the computation and “merging” of

these model-histograms qc. We now formalise the problem and then introduce our proposed

model in the next section. Given the query-histogram h, we assign a class-label ĉ to the

histogram h by minimising the following function.

ĉ = arg min
c

(D (h||qc)) , (4.1)

4.2 Single-Histogram Class Models 64

where D denotes the distance measure that is used to compute the distance between the query-

histogram and the class-histograms. The following options for D are explored:

Kullback-Leibler divergence DKL:

DKL(h ‖ q) =
∑

hi · ln
(
hi
qi

)
. (4.2)

Euclidean Distance DL2:

DL2(h ‖ q) =
∑
i

(hi − qi)2 . (4.3)

χ2 Distance Dχ2 :

Dχ2(h ‖ q) =
∑
i

(hi − qi)2

hi + qi
. (4.4)

Here h denotes the query- or test-histogram and q denotes a model histogram (see Sec-

tion 2.1.2) and the subscript on the corresponding non-bold letters specifies the histogram

bin.

4.2 Single-Histogram Class Models

This section introduces and evaluates our compact class models (called single-histogram class

models or SHCMs), where each object-class is modelled by a single histogram representing

the distribution of textons for that class. This can significantly reduce the computational cost

compared to standard nearest neighbour methods (k-NN) which require storing all training

instances. It is crucial to have such a compact representation for each class in order to perform

efficient classification of image regions. Chapter 5 exploits this classifier as a “weak”-classifier

in the Random Forests framework. The single-histogram class models are evaluated using the

MSRC dataset (see Section 3.1 and Figure 3.1 on page 51). Each image may contain instances

from different object-classes and several instances from the same class. Groundtruth regions

(connected pixels) in one image belonging to the same object-class form one exemplar .

The SHCMs, which will be presented in detail in the next sections, represent a generative

bag of textons model for each object-class. We show that the nearest neighbour framework

together with the Kullback-Leibler divergence as the underlying measure corresponds to a

4.2 Single-Histogram Class Models 65

maximum likelihood estimator for the class assignments.

4.2.1 Learning the Single-Histogram Class Models

This section describes details of how our models, specifically the SHCMs, are learnt. During

training the histograms corresponding to different groundtruth regions (exemplars) belonging

to the same class are combined together into a single, optimally estimated histogram. During

testing the aforementioned query-histogram is compared to each of the C (number of classes)

class histograms, as opposed to each of the (possibly many) exemplars, as in the case of k-

NN classification. The use of single-histogram models clearly reduces the time complexity for

classification. In Section 4.3 we show that they also improve performance.

The key question is how to compute such single-histogram models. Histograms are repre-

sented as V -vectors, with V being the vocabulary size. For a given class c, we want to compute

the Maximum-Likelihood Estimate (MLE) for our class model, i.e. the histogram q, given the

texton distribution in the exemplars. The following section shows that this relates to using an

average over the exemplar histograms together with Kullback-Leibler divergence (DKL). Fur-

thermore, it is shown how Euclidean distance (DL2) fits into the same framework. Different

distance measures such as Bhattacharyya, Alpha-Divergence [Hero et al. (2002)], or histogram

intersection may be used as well. In general, however, the optimal SHCM does not correspond

to the simple average of the exemplar histograms, and a more complex optimisation might be

required. This for example, is the case for χ2 distance (Dχ2). As Dχ2 is a common distance

measure for histogram distributions, we still report the results using the same SHCMs as for

the KL divergence and Euclidean distance.

Maximum-likelihood estimate and Kullback-Leibler divergence. It is now shown that

the maximum-likelihood estimate for the texton distribution in the single-histogram class model

corresponds to minimising the Kullback-Leibler divergence of the SHCM to all the exemplar

regions. Given the training data T = {x1, . . . , xn} (all textons in the exemplar regions) for one

object-class and their underlying distribution P and using the assumption that those exemplars

are independent and identically distributed, it follows [Duda et al. (2001)]:

4.2 Single-Histogram Class Models 66

p(T |θ) =
n∏
i

p(xi|θ) . (4.5)

The MLE of θ (the parameters to estimate) is by definition, the value θ̂ which maximises p(T |θ).

Taking the logarithm we can define

l(θ) := ln p(T |θ) =
n∑
i=1

ln p(xi|θ) (4.6)

which we want to maximise with respect to θ. Let Pn be the empirical distribution which

puts probability 1/n on each sample xi, and Qθ be the parametrised model (class model in the

training case) that describes Pn. Then the expected value of l(θ) over distribution Pn is,

L(Pn, Qθ) := EPn{ln p(x|θ)} =
1

n

∑
i

ln p(xi|θ) =
1

n
l(θ)

and the expectation over P of the empirical version L(Pn, Qθ) is L(P,Qθ) for any n,

i.e. EP{L(Pn, Qθ)} = L(P,Qθ) [Eguchi and Copas (2005)]. Maximising l(θ) is equivalent to

maximising L(Pn, Qθ), which again is equivalent to maximising L(P,Qθ). Using the definition

of KL-Divergence:

DKL(P ‖ Qθ) =
∑
x

p(x) ln
p(x)

q(x)

=
∑
x

p(x) ln p(x)−
∑
x

p(x) ln q(x)

= L(P, P)− L(P,Qθ) ,

it follows that maximising L(P,Qθ), and therefore l(θ), is equivalent to minimising

DKL (P ‖ Qθ). During training, this results in the maximum-likelihood estimate for our class

model Qθ. During classification, the class model (out of the learnt models: Qθ1 , . . . , QθC) which

minimises DKL (Pt ‖ Qθi) or equivalently L (P,Qθi) is found, thereby assigning a class-label.

Pt denotes the visual-word distribution of the region to be classified and corresponds to the

query-histogram h that was introduced previously.

Hence, given the texton counts from all the training images, we have the probability dis-

4.2 Single-Histogram Class Models 67

tribution of the textons P in one object-class. Given that, we want to determine the MLE for

our class model (the histogram q̂ = (q1, . . . , qV)), we minimise DKL(P ‖ q) (see (4.2)).

P is the distribution of all V visual-words in the given class c. P is therefore the histogram

of all visual-words of this class and thus:

P =

∑
j n

jpj∑
j n

j
, (4.7)

with pj being the normalised histograms of the exemplar j and nj being the number of pixels

in it. Thus, q̂ = P is our class model.

Model estimation as minimising the average distance to exemplar regions. Intu-

itively, it is equally justified to compute the class model such that it minimises the distance

(Kullback-Leibler in this case) to all training histograms (exemplars). By doing so, it can be

expected that the class model is as close as possible to the test histograms of the corresponding

class. This constraint is formulated as follows:

EKL :=
Nc∑
j=1

njDKL(pj ‖ q) subject to ‖ q ‖1= 1, qi ≥ 0 ∀i , (4.8)

where Nc is the number of exemplars for the object category c.

Standard manipulation (see Appendix 8.1.1) yields the global minimum of (4.8) as

q̂ :=

∑
j n

jpj∑
j n

j
, (4.9)

which is equivalent to equation (4.7). The expression EKL which is directly connected to the

MLE of the texton distribution for one object-class, can either be use it in its pure form, or

with nj : = 1, j = 1 . . . Nc. The latter case corresponds to computing the normalised histogram

of each exemplar and minimising the sum of the KL divergences from our class model to those

exemplar histograms. As shown before, weighting each normalised exemplar histogram with

the number of pixels nj reduces to the MLE case.

During classification, as defined in (4.1), the class ĉ that minimises the Kullback-Leibler

divergence to the query-histogram h is chosen. This means that the class histogram qĉ is the

one which explains the query h best and is the most likely class, due to the aforementioned

4.2 Single-Histogram Class Models 68

correspondence of KL and MLE.

Euclidean distance. Starting with (4.8), we may use different distance measures. Even

though the MLE interpretation does not apply in the L2 case, it still has the same very intuitive

interpretation, namely that the sum of the distance of the model histogram to all the exemplar

histograms is minimised.

Once again, given the class c and its exemplar histograms pj we seek the histogram q̂ which

minimises the following cost:

EL2 :=
Nc∑
j=1

njDL2(p
j,q) subject to ‖ q ‖1= 1, qi ≥ 0 ∀i . (4.10)

Standard manipulation leads to the same q̂ as obtained by minimising (4.8). For more details

see Appendix 8.1.1 (8.6). The classification finds the class model qĉ that is closest to the query-

histogram h, based on the used distance measure, in this case DL2. With the Euclidean metric

it does not correspond to the MLE for the class given the model.

χ2 distance. The χ2 distance is defined in (4.4). It turns out that the same interpretation

does not work here, the histogram q̂ which minimises the distance between the model histogram

and all the exemplar histograms is not the average over the exemplar histograms.

4.2.2 Results: Region-Level Classification

We now adopt the region-level classification as in Winn et al. (2005) as a baseline comparison of

k-NN (see Section 2.1.2) versus the proposed single-histogram class model and thus demonstrate

the strength of our model, also in comparison to Winn et al. (2005). In region-level classification

each of the aforementioned groundtruth regions (which are available for both training and test

data) is classified as a whole, see 4.1(a) on page 62 for an illustration.

In this experiment the single-histogram class models are compared to the performance of

the Gaussian models proposed in Winn et al. (2005). Following the evaluation methodology

in Winn et al. (2005), we classify each input test region2 as belonging to one of the classes in the

dataset and measure the error with respect to groundtruth. Table 4.1 shows that the proposed
2The area belonging to a region and its groundtruth labels are known.

4.3 Object Segmentation Results and Comparative Evaluation 69

1-NN (χ2) SHCM-KL 1-NN [Winn et al. (2005)] 1-NN T [Winn et al. (2005)]

9-class 92.34% (for V = 4000 and V =32000) 93.43% (V=64000) 93.4% 92.7%

Table 4.1: Region-level classification. Comparing the region-level classification perfor-
mance obtained by our single-histogram class models using KL-Divergence (SHCM-KL) to
that obtained from the conventional nearest neighbour classifier (1-NN) using the χ2 distance.
Shown are the best results if V is varied (V is shown in brackets). Results are comparable
to previous published performances for this dataset [Winn et al. (2005)]. The authors use
nearest neighbour (1-NN) on histograms over their full 1200 visual-word vocabulary and the
discriminatively learnt reduced version (T).

single-histogram class models perform comparably. For this comparison the exact training/test

splits provided by the authors of Winn et al. (2005) were used. Each of the methods (k-NN using

χ2 on exemplars, and Kullback-Leibler divergence for single-histogram models) are optimised

separately over the size of the vocabulary V , and the best result is reported. χ2 is reported for

k-NN as this gives superior results to L2 and it is a commonly used distance measure for region

classification on exemplars [Varma and Zisserman (2003)]. In both cases the features are 5× 5

patches and the visual vocabulary was constructed with k-means (10 iterations). In addition

to the results given in the table we also experimented on the 6-class dataset (see Section 3.1)

using V = 8000. The results are similar in that the single-class histogram reaches 85.5% and

outperforms the 1-NN χ2 classifier, which only reaches 79.5% on the region-level classification

task.

4.3 Object Segmentation Results and Comparative Evalu-

ation

In this section we investigate the segmentation performance of the model and algorithm in-

troduced in the beginning of this chapter. We use the datasets introduced in Section 3.1, but

especially the exploratory experiments where carried out on the smaller 6- and 9-class MSRC

datasets.

All results, if not noted otherwise, indicate the pixelwise classification performance in per-

cent. This is the proportion of correct classified pixels compared to the groundtruth, the

measure was introduced in Section 3.3.

The visual vocabulary and class models are learnt from the training data only. As mentioned

before, during testing a window of dimension (2w + 1) × (2w + 1) is slid across the image to

4.3 Object Segmentation Results and Comparative Evaluation 70

V Acc. w Acc.
(w = 11) (%) (V = 8000) (%)

500 79.1 5 80.3
1000 80.7 11 82.4
2000 81.7 15 82.4
4000 82.3 20 82.1
8000 82.4 26 81.1
16000 83.0 30 80

Figure 4.2: Parameter analysis on the 6-class dataset. Pixelwise classification perfor-
mance as a function of the size w of the sliding window and the size V of the visual vocabulary.
The features are 27-dimensional 3× 3 CIE-LAB patches. The vocabulary is learnt by k-means
clustering run for 500 iterations. KL divergence is used for histogram comparisons.

generate a query histogram h of visual-words assigned to the centre pixel of this window. In

Section 4.3.1 performance over the system parameters using the 6-class and 9-class datasets

together with single-histogram models is evaluated. Section 4.3.2 compares various versions

of k-means clustering and how they affect the quality of the visual-word vocabulary. Finally,

Section 4.3.3 compares the proposed single-histogram class model to the commonly used nearest

neighbour classifier on the segmentation task.

4.3.1 The Effect of the Window and Vocabulary Size

This first set of experiments is designed to evaluate different values for the size of the sliding-

window w and the vocabulary size V .

Figure 4.2 plots the pixelwise classification accuracy as a function of both the window size

w and the vocabulary size V . The thick black line on the xy-plane denotes the sliding-window

size dependent on the cluster size that result in highest performance. Two cross-sections of the

accuracy function through the maximum are shown in the table. For the production of this

graph k-means clustering until convergence with a maximum of 500 iterations was used. The

features were 27 dimensional 3 × 3 CIE-LAB patches. The maximum performance is reached

for w = 11, 15 and V = 16, 000. Accuracy does not vary much over the range V = 8, 000 –

4.3 Object Segmentation Results and Comparative Evaluation 71

10
2

10
3

10
4

10
5

50

55

60

65

70

75

visual−words

pe
rf

or
m

an
ce

Kullback−Leibler
Chi−Square
Euclidean
V=8000

Figure 4.3: Accuracy for DKL, Dχ2, and DL2 depending on the size V of the visual-
word vocabulary evaluated on the 9-class dataset using w = 12. Note that the x-axis shows
the number of visual-words on a logarithmic scale. The error-bars show two times the standard
deviation from the mean over five runs of k-means clustering with 10 iterations. The vertical
line denotes V = 8000 – the number of visual-words we use in most of our experiments.

128, 000, so from here on a vocabulary of size V = 8, 000 and w = 12 are used to reduce the

computational cost. The performance is found not to depend much on the size of the feature

(i.e. size of colour patch), and we chose to use 5 × 5 colour patches from here on. Figure 4.3

shows a comparison of DKL, Dχ2 and DL2 with varying size of the visual-word vocabulary. It

shows that the performance increases with increasing vocabulary size for both DKL and Dχ2

and levels out or decreases for DL2. For even larger vocabularies a decrease in performance

should be expected for DKL and Dχ2 as well, but due to the significantly longer runtime we

did not confirm this in experiments.

4.3.2 Influence of Methods to Build the Texton Vocabulary

In Table 4.2 the influence of different numbers of iterations in k-means clustering for the con-

struction of the visual vocabulary is shown. Zero iterations denotes randomly sampled cluster

centres from the feature space, which is how k-means is initialised in all cases. Interestingly the

performance is only slightly affected by the number of iterations. In particular, there is only a

small gain in increasing from 10 to 500 iterations. V = 8000 visual-words and 5 × 5 patches

4.3 Object Segmentation Results and Comparative Evaluation 72

KM, 0 iters KM, 1 iter KM, 10 iters KM, 500 iters

KL 6-class 81.96± 0.20% (50) 82.24± 0.20% (10) 82.54± 0.15% (5) 82.56± 0.13% (5)
“ 9-class 74.72± 0.22% (10) 74.92± 0.17% (10) 75.07± 0.15% (10) –

χ2 6-class 76.59± 0.17% (50) 76.66± 0.16% (10) 76.60± 0.09% (5) 76.45± 0.03% (5)
“ 9-class 69.64± 0.20% (10) 70.91± 0.10% (10) 72.00± 0.07% (10) –

L2 6-class 76.57± 0.20% (50) 76.83± 0.23% (10) 77.00± 0.11% (5) 76.57± 0.18% (5)
“ 9-class 60.54± 0.40% (10) 60.15± 0.40% (10) 58.64± 0.26% (10) –

Table 4.2: Variations of k-means (KM) clustering. The mean (± one standard deviation)
pixelwise classification accuracy computed over multiple runs of k-means; with the number of
runs used in each case shown in brackets. Different numbers of iterations of k-means for
constructing the visual vocabulary on the 6-class and 9-class sets are compared using single-
histogram class models.

were used for the experiments in Table 4.2. The computational time increases drastically from

10 to 500 iterations, which is why this experiment was only performed for the 6-class dataset.

As a baseline classifier we compared the texton based single-histogram class models to

pixelwise colour histograms of size 8000 (20 bins for each colour). This results in a pixelwise

classification performance of 67.3% on the 9-class dataset and thus coincides with the findings

of Verbeek and Triggs (2008), who report 67.1% for simple appearance based features.

4.3.3 Keeping all Exemplar Histograms vs. Single-Histogram Class

Models

This section compares the performance of single-histogram class models to the nearest neighbour

approach, where all training exemplars are stored and the query-histogram is classified according

to the nearest neighbour exemplar. The experiments show that the performance of the single-

histogram models is comparable to the classification accuracy retrieved by using k-nearest

neighbour. However, the classification complexity is several-fold decreased, since only the

closest class histogram has to be found instead of the closest histogram out of all training

exemplars (about 200 training exemplars defined by the groundtruth regions in the training

images, versus 6 or 9 class histograms).

Table 4.3 summarises the performance of k-nearest neighbour (k-NN) and the single-

histogram models. It is apparent that the performance of the single-histograms model competes

or even outperforms the k-NN method. Figure 4.4 on page 74 compares the single-histogram

models (using KL divergence) to the k-NN version using all training exemplars and χ2 dis-

4.3 Object Segmentation Results and Comparative Evaluation 73

DKL(6-class) DL2(6-class) Dχ2(6-class) DKL(9-class) DL2(9-class) Dχ2(9-class)
k-NN 82.1% 76.6% 78.7% 71.7% 64.9% 72.1%

single hist. 82.4% 77.0% 76.5% 75.1% 58.5% 72.0%

Table 4.3: k-NN vs. single-histograms. Comparing the pixelwise classification perfor-
mance obtained by our single-histogram class models with that obtained from conventional
nearest neighbour. In this case we used V = 8000 and 5 × 5 patches as features. K-means
with 10 iterations was used to construct the visual vocabulary. For the 6-class set the best
performing k out of k = 1 . . . 100 and for the 9-class set only the performance for k-NN with
k = 1 is reported, due to the runtime cost. Using single-histogram class models in conjunction
with KL divergence produces the best results.

GT\Cl grass cow sheep bird cat dog
grass 95.61 2.0 1.2 1.2 0.1
cow 3.8 71.9 6.4 1.0 5.4 11.5
sheep 3.2 12.0 62.7 4.3 4.9 13.0
bird 5.5 27.1 24.0 27.7 10.4 5.4
cat 5.5 12.4 6.9 69.8 5.5
dog 1.1 24.7 2.3 6.5 18.2 47.2

GT\Cl building grass tree cow sky aeroplane face car bicycle
building 56.2 5.0 3.3 2.0 13.0 1.4 11.4 7.7
grass 0.5 84.6 10.2 3.6 1.1
tree 6.3 5.5 76.8 1.2 0.3 1.4 2.4 6.3
cow 2.3 2.6 2.6 83.6 0.3 4.6 3.2 0.8
sky 7.2 2.0 0.1 80.9 5.5 4.5

aeroplane 17.0 0.8 4.8 3.3 0.2 54.6 15.0 4.4
face 4.2 0.5 18.4 0.9 69.0 3.7 3.4
car 6.5 0.8 3.8 0.7 2.4 1.9 70.4 13.5

bicycle 9.1 0.1 4.7 2.8 1.5 0.1 8.9 73.0
(a) conf. mat. for 6-class set (b) conf. mat. for 9-class set

Table 4.4: Confusion matrices for the single class histogram method (see Table 4.3). (a)
for the 6-class set; achieving an overall pixelwise classification accuracy of 82.4%. (b) for the
9-class set; achieving a pixelwise classification accuracy of 75.1%. KL divergence is used for
both cases.

tance on a per image basis. It can be seen that the SHCMs perform similar to k-NN on many

images, but also significantly better on a few images. Figure 4.5 shows two of the extreme

outlier images. The experiments were performed using a vocabulary size of V = 8000 and 5×5

patches as features. The construction of the visual-word vocabulary was done by k-means with

a maximum of 10 iterations (if not mentioned otherwise), a trade off between performance and

computational time.

The optimal k in the k-NN was k = 1 for KL divergence, and k = 3, 4 for L2; for the

9-class set only k = 1 was used. Next we show full confusion matrices rather than just overall

classification accuracies.

Table 4.4 shows the confusion matrices for selected experiments of Table 4.3. The matrices

are row normalised (so that the percentages in each row sum to 100%). Only pixels belonging

to one of the classes are considered (i.e. pixels labelled as void are disregarded). For the 6-class

set, the grass class is recognised most reliably, followed by cows, cats and sheep. This provides

4.3 Object Segmentation Results and Comparative Evaluation 74

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

KL SHCMs (per image pixel performance in %)

C
hi

−
S

qu
ar

e
N

N
 (

pe
r

im
ag

e
pi

xe
l p

er
fo

rm
an

ce
 in

 %
)

Figure 4.4: SHCMs vs. NN image scatter plot: This plot visualises the pixel performance
for each test-image and compares SHCMs with KL divergence to the NN version (all training
exemplars) with the χ2 distance measure. The two outlier images marked with ◦ and × are
shown in Figure 4.5. SHCMs perform better on 69 of the 120 test images and ties on 3 images.

Image Groundtruth χ2 NN SHCMs

Figure 4.5: SHCMs vs. NN: Shown are two of the extreme outliers in Figure 4.4. The top
row shows the image marked with ◦ the bottom row shows the one marked with ×. Given is
the color coded classification for both χ2 NN and SHCMs.

an idea of the relative difficulty of modelling each class. At this point one may think that our

models work well only with texture-defined objects (grass, woolly sheep, etc.). However, we

also include classification of man made (less texture-like) objects such as cars and bicycles in

the 9-class dataset (also used in Winn et al. (2005)). Table 4.4(b) presents the confusion matrix

4.3 Object Segmentation Results and Comparative Evaluation 75

1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7
x 10

−3

exemplar 1

exemplar 2

class

(a) (b) (c)

Figure 4.6: Multi-modality of single-histogram class models. Different instances of
cows induce different proportions of visual-words. A unified “cow” histogram (b) will contain
different “modes” for the different visual aspects and species of the class. In (b) the mode
corresponding to the top cow in (a) is shown in red, and the mode corresponding to the bottom
cow is shown in blue. The remaining visual-words of the cow -model are shown in black in the
middle. Note that a simple sorting of the visual-words has been employed to bring out the
different modes. (c) provides a schematic visualisation.

for this dataset. The performance is still well above 70%, thus confirming the modelling power

of the proposed single-histogram models. Figure 4.7 shows some classification results.

KL Divergence vs. Euclidean Distance. The experiments of Table 4.3 on page 73 show

that the KL divergence performs significantly better than the Euclidean distance measure for

both k-NN and SHCMs, although the effect is more pronounced for the latter due to the multi-

modality illustrated in Figure 4.6 and discussed in the following section. This confirms the

better suitability of the KL divergence for single-histogram models. As mentioned before, for

the χ2 distance the minimisation of the objective function (4.1) is more difficult and so we use

the average as defined in (4.9).

4.3.4 Discussion

As the experiments demonstrate (see Table 4.3 on page 73 and Figure 4.3 on page 71), KL

divergence is superior to both L2 and χ2 distance when the single-histogram models are used.

This observation can be explained by the fact that the KL divergence deals properly with

multi-modal distributions. Different instances of a class may induce a highly multi-modal class

4.3 Object Segmentation Results and Comparative Evaluation 76

cow

water

grass

tree building

road

bycicle

(a) (b) (c) KL (d) L2

Figure 4.7: Class segmentation results. (a) Original photographs. (b) Groundtruth class-
labels. (c) Output class maps obtained with KL divergence. (d) Output class maps obtained
with L2 distance. In most cases L2 gives less accurate segmentation. In both cases our single-
histogram class models were used, together with 5 × 5 patch features, V = 8000 and k-means
clustering.

histogram. Consider the three schematic histograms shown in Figure 4.6(c). If L2 (or χ2)

distances are used then each exemplar histogram will have a large distance from the class

histogram (due to bins qi of the mode in the class histogram which are not present in each of

the exemplars). However, the KL divergence ignores all the null bins of the query histograms

h (as these evaluate to zero in
∑

i hi log hi
qi
), thus making it a better suited distance (although

it still penalises histograms which are not identical to the class histogram, e.g . an exemplar

histogram having one mode of the class histogram does not have distance zero to the class

histogram, as the histograms are normalised visual-word distributions). Figure 4.6(b) provides

an example of such a multi-modal class histogram (here the cow model), and two exemplar

regions inducing modes in the class model.

Until now we were only minimising the intra-class distance of the model histograms, based

on MLE for KL. Generally, it would be desirable to also maximise the inter-class distance

when building the single-histograms, which would result in a more discriminative classifier.

4.4 Modelling Test Regions as a Mixture of Classes 77

The comparison to k-NN, however, seems to justify the simplification of only minimising the

intra-class distance.

Finally, Figure 4.7 shows some results of images into their constituent object-class regions.

Note that the (visual) accuracy of the L2 classification results is inferior to that obtained with

KL divergence.

Informal experiments revealed that the classification method is quite robust with respect

to the vocabulary. Choosing not the nearest visual-word but the second closest, or using

approximate nearest neighbour methods gave virtually the same results. The latter provides a

significant speedup with comparable performance.

4.4 Modelling Test Regions as a Mixture of Classes

In this section we generalise the assignment of only one object-class to each image region

(including sliding windows, i.e. pixels) in a natural way. Here the classification of an image

region is modelled as a mixture of classes. This seems reasonable since a given region (sliding-

window) often contains more than one object-class. Section 4.2.1 focused on the training phase

by introducing a compact model for each class; in contrast this section focuses on the testing

phase using the models we introduced before. The single-class histograms are the basis of this

section and they facilitate the proposed model due to their simplicity. A similar approach would

be challenging with more sophisticated models, e.g . the Gaussian distribution over histograms

proposed in Winn et al. (2005). There is a significant amount of literature about mixture

classification in the field of remote sensing and geographical information systems, where it is

often referred to as fuzzy classification. Kent and Mardia (1988) is one of the earlier papers and

introduces two models based on multivariate Gaussian random fields. Wang (1990) also gives a

good overview. In remote sensing applications usually a good model of the mixing effects does

not exist. In our case however, given our visual-word class model, we can explicitly model the

mixed signal inside a sliding-window and thus solve for the mixing coefficients.

4.4.1 Two-Class Mixture Model

Given a region in an image and its corresponding histogram of visual-words, instead of finding

only one closest class histogram, we find a mixture of a pair of model histograms together with

4.4 Modelling Test Regions as a Mixture of Classes 78

Figure 4.8: Sliding-windows at different locations. Assuming the presence of two object-
classes within small windows is reasonable. It is possible that a windows can contain more
than two object-classes, as shown in the red rectangle on the left, however, this will not occur
very often.

the corresponding mixing coefficient.

During classification, each pixel will be explained as belonging to two different classes with

different coefficients. In this way we hope to better model transitions between different object-

classes and, capture thin structures such as animal legs. Furthermore, as shown in Figure 4.8

having one or two object-classes within small sliding-windows is a common event, while finding

more than two classes in such small areas is much rarer (e.g . red rectangle).

Let h be the test-histogram and qi and qj two single-histograms class models. Then h can

be interpreted as a mixture of the two model histograms as follows

h
D
= αqi + (1− α) · qj with i 6= j , (4.11)

where D ∈ {DKL, DL2} denotes the distance measure that is used and α ∈ [0, 1] refers

to the mixing coefficient. Thus, a new minimisation problem needs to be solved for all

{(i, j) : i 6= j, 1 ≤ i < j ≤ C} (C denotes the total number of object-classes). The result of

the minimisation is a pair of histograms (̂i, ĵ) and the value of the mixture parameter α̂ which

minimise (4.11). Both DKL and DL2 are presented. Assuming a tuple (i, j) and h are given α̂

can be determined as follows. For details see Appendix 8.1.2.

KL divergence. The aim here is to minimise the objective function FKL : =∑V
i=1 hi log

(
hi

αai+(1−α)bi

)
subject to 0 ≤ α̂ ≤ 1. Since FKL is convex a Gauss-Newton opti-

misation algorithm is employed to determine α̂ = arg minα FKL.

4.4 Modelling Test Regions as a Mixture of Classes 79

Euclidean distance. The convex energy to be minimised is FL2 : =∑
i (hi − (αai + (1− α)bi))

2. Algebraic manipulation leads to the global minimum

α̂ =
P
i(ai−bi)·(hi−bi)P

i(ai−bi)2
with 0 ≤ α̂ ≤ 1 to be fulfilled in addition.

Efficiency. Rather than searching for each pair (i, j) and then compute α̂, a greedy approach

can be used. First (i) the single-histogram closest to the test histogram is found, then (ii) the

second closest histogram is chosen and finally (iii) the optimal mixing coefficient is determined

as described above. The results are comparable to the global minimum. Clearly, there are

further approximations which could be analysed.

4.4.2 Multi-Class Mixture Model

Instead of modelling the histogram as a mixture of only two classes the mixture can consist of

all C classes, called the n-class case. The n-class case denotes the method were

h
D
=
∑

αcq
c =

[
q1, . . . ,qC

]︸ ︷︷ ︸
Q

α (4.12)

with c = 1 . . . C denoting all classes is used as mixture model, with Q being the matrix con-

sisting of qc as columns and α denotes the vector consisting of all αc. Thus, the mixture of

histograms α̂ which minimises the distance D ∈ {DL2, DKL} to the query-histogram h should

be determined.

Euclidean distance. This problem can be efficiently solved for DL2 using the pseudo

inverse of a matrix. This leads to the minimisation problem given in (4.13) which can be

solved using the pseudo-inverse of Q if it is invertible (see (4.14)). This is the case if Q has

full column rank, which is usually the case, since the class histograms qc are most likely to be

linearly independent. It should be pointed out that this problem formulation does not impose

the constraint of αc ≥ 0 as was done for the two-class formulation. We get the following nice

compact solution.

α̂ = arg min
α

(
V∑
i=1

(h− Qα)

)2

(4.13)

α̂ =
(
QTQ
)−1

QTh (4.14)

4.4 Modelling Test Regions as a Mixture of Classes 80

Kullback-Leibler divergence. If KL-Divergence is used instead of Euclidean distance the

multi class mixture model is related to probabilistic Latent Semantic Analysis (pLSA) [Hof-

mann (2001)] used in statistical text analysis. The difference in the method proposed here is

that the topic vectors are restricted to only be formed from histograms of a single class, but

each entity (pixel) is modelled as a mixture of topics (here classes).

Thus, once the single-histogram models are learnt, pLSA can be used to compute the mix-

ture. Using the common notation for pLSA we have P (w|d) = P (w|z)P (z|d) (see Figure 2.9).

In our case w are the visual-words, d are the images and z are the classes, thus this translates

to P (w|d) = h, P (w|z) = Q and P (z|d) = α which exactly gives (4.12) with D = DKL. This

can be solved using the “folding-in” EM-algorithm for pLSA.

The multi-class mixture model on its own does not significantly improve performance (see

Table 4.5 on page 82 for the DL2 case), but it can be used if consecutive steps require a

confidence value for each class instead of just the maximum likelihood estimate.

4.4.3 Evaluation of the Two-Class Mixture Model

In this section we assess the advantages of using the mixture model in terms of both classi-

fication and segmentation performance. Most of the experiments used DL2 since its current

implementation is much faster than DKL and it is sufficient in order to illustrate the properties

of this idea.

Modelling ambiguity of classification. Given an input image, for each pixel estimate

the most likely mixture of two object-classes and also their mixing coefficient α̂. The mixing

coefficients are the ideal indicator of “ambiguity” of a pixel. In fact the difference α = |α̂− 0.5|

measures the amount of “mixing” of a pixel. As shown in Figure 4.9(d,i) the largest amount of

mixing effects occur at the transition between different object-classes (shown in black).

Dealing with the “background” class. A problem with the technique in Winn et al. (2005)

is that no “background” class is defined. Therefore, during testing the classification is forced

to produce an answer within the set of known object-classes. There is no “unknown” class.

4.4 Modelling Test Regions as a Mixture of Classes 81

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.9: Two-class mixture model. (a,f) original test images, (b,g) groundtruth images,
(c,h) colours at each pixel correspond to class of histogram qi in equation (4.11) if α̂ > 0.5, qj

otherwise. (d,i) map of ᾱ with black for ᾱ = 0 and white for ᾱ = 0.5 , (e,j) as for (c,h) with
qi if α̂ < 0.5, qj otherwise. V = 8000, w = 12, 9-class set, and L2 distance were used and
α = |α̂− 0.5|.

(a) (b) (c) (d)

Figure 4.10: Background class. Another example illustrating the advantage of capturing
classification ambiguity. (a) original image, (b) groundtruth labelling. Note that the back-
ground sofa is labelled as cat (c) and rejected in (d) with ᾱ < 0.3. V = 8000, w = 12, 6-class
set, L2 distance and 3× 3 patches were used.

Figure 4.10(c) illustrates this problem. The red sofa (the class “sofa” does not belong to the

known set) is incorrectly labelled as “cat”, due to the mixture model however this region has a

high mixing factor and can be rejected using a threshold αt on ᾱ.

The conventional solution to this problem is to learn a model for the background class, from

training examples. However, the problem is finding the right example images. Also, every time

the set of known object-classes changes, the example images of the background class change

and thus the background model needs to be re-trained. This problem can be avoided if the

mixture model is used.

Performance as a function of rejection. Table 4.11 illustrates the pixelwise classification

performance as a function of αt, for KL divergence. As αt increases the number of retained

pixels decreases, but their confidence increases and so does the classification performance.

4.4 Modelling Test Regions as a Mixture of Classes 82

0 0.05 0.1 0.15 0.2 0.25 0.3
81.36
82.20
82.91
83.68
84.44
85.23
86.00
86.78
87.52
88.25
88.97
89.69
90.41
91.18
91.91
92.57

cl
as

si
fic

at
io

n
ac

cu
ra

cy

0 0.05 0.1 0.15 0.2 0.25 0.3
100.00
99.41
98.91
98.37
97.84
97.30
96.77
96.24
95.73
95.22
94.72
94.23
93.72
92.91
92.37
91.83

rejection threshhold

pe
rc

en
ta

ge
 o

f c
la

ss
ifi

ed
 p

ix
el

s

Figure 4.11: Rejecting pixels. Classification performance as a function of the rejection
threshold αt. As αt increases the number of retained pixels decreases, but their confidence
increases and so does the classification performance. Here KL divergence was used. Note: The
left y-axis (classification accuracy) is linear, however the labelling is not; it corresponds to the
experimental values for certain αt. The right y-axis is not linear. It is interesting to note that
the classification accuracy almost linearly depends on αt.

no voting voting
DL2 2-class (w = 12) 77.5 77.9 (77.8 Gauss)
DL2 2-class (w = 5) 76.7 77.1 (77 Gauss)
DL2 n-class (w = 12) 78 78.4 (78.3 Gauss)
DKL 2-class (w = 12) 82.5 81.7 (81.6 Gauss)

Table 4.5: Voting. Overview of different voting methods using the SHCMs. Pixelwise
classification accuracy is given in percent.

4.4.4 Exploiting the Mixture Model

We now suggest three applications that are based on the proposed mixture model and illustrate

how it can address problems, that would otherwise need to be solved with ad-hoc methods.

Voting. Voting is a method which does not simply assign the mixture of histograms deter-

mined from the sliding-window to the centre pixel of this sliding-window, but instead adds the

value(s) of the mixing factor(s) α to all pixels contained in the sliding-window. Each pixel’s

mixture is therefore the sum of the mixtures from all sliding-windows which contain it.

The experiments where carried out on the 6-class dataset using 8000 cluster centres deter-

mined with a maximum of 500 k-means and 3 × 3 patch features. Table 4.5 shows results for

DL2, DKL and two different sliding-window sizes (w = 5, 12). The first column (no voting)

gives an overview of the classification accuracy if the class with the highest mixing factor is

chosen as the final classification for each pixel. The value given in brackets refers to the pixel-

4.4 Modelling Test Regions as a Mixture of Classes 83

Figure 4.12: Object detection ratio as a function of the rejection threshold. Shown
is the ratio correct

falseneg.+falsepos.
with respect to αt. V = 8000, w = 12, 9-class set, and L2 distance

were used.

wise classification accuracy in percent for voting weighted by a Gaussian that is centred on the

centre-pixel with a standard deviation of half the sliding-window size (σ = 1
2
· w). The results

indicate that voting can improve the performance slightly.

Scene classification. The proposed mixture model is applied to the problem of multiple

object detection. The goal is to detect which of the objects in our dataset appear in a given

input image. Using the pixelwise classification technique described earlier a list of the classes

present in an image can be compiled and compared with groundtruth. A class c is reported as

occurring if p > pt, i.e. if at least pt pixels in a connected component are classified to belong

to the class c. The results are shown in Figure 4.12 as a function of the rejection threshold.

The results show how the ratio between correct and incorrect detections (false negatives : not

detected classes; false positives: wrongly detected classes) increases with the rejection threshold

αt and the pixel threshold pt. It is clear that the mixture model can improve the performance

over the use of a simple pixel threshold pt. However, as the underlying classifier is tuned towards

object segmentation it cannot be expected to compete with object detectors used in the VOC

challenges [Everingham et al. (2006, 2007, 2008)].

Foreground- & background-segmentation. Figure 4.13 gives two examples where the

mixture model is used to define a background- and foreground-map to initialise graph-cuts (see

Section 2.2.4). Note that the object-class that we wish to segment as foreground must be

specified by classname, here dog and cow. This is an illustration of nice segmentation results

4.5 Pixel Context based on Bottom-Up Segmentations 84

image foreground-map background-map segmentation

Figure 4.13: Foreground- & background-segmentation examples. The mixture model
can be used to extract a foreground- and background-map which can then be used together
with Graph-cuts to give an object segmentation.

that does not require any user interaction, unlike Rother et al. (2004), for example.

4.4.5 Discussion

The single-histogram class models introduced in Section 4.2 have been employed in this section

to explain input test regions as a mixture of two or more different object-classes. The mixture

model has enabled us to model classification ambiguity explicitly. In turn, this has allowed us

to reject ambiguous pixels and increase the reliability of our recognition algorithm. Thus it

enables the creation of foreground- and background-maps to define an initialisation for Graph-

cuts based segmentation. Furthermore, it can avoid the explicit modelling of a background class,

since the background can be modelled indirectly with the mixture model. Other applications

could involve “modelling” a full “posterior” over object-classes with the mixture model approach,

if no probabilistic model is used; for example, in the case of the DL2 or Dχ2 . In the case of

DKL the distance directly corresponds to the likelihood of the test-histogram h being drawn

from the multinomial class model q and thus induces a class posterior, which is required for the

experiments in the following section. Figure 4.13 provides two nice examples for the automatic

generation of tri-maps, that can be used for foreground background segmentation.

4.5 Pixel Context based on Bottom-Up Segmentations 85

Felzenszwalb (FH-0.2-100-50)

Felzenszwalb (FH-0.2-500-200)

Felzenszwalb (FH-0.5-500-200)

Mean-shift (MSO-9-5-100)

Normalised-cuts (NC-1-100-G)

Normalised-cuts (NC-1-100-G) posterior of groundtruth class colour coded MAP estimate

Figure 4.14: Classifying segments. The left column shows the segmented images. Once
a segmentation of the whole image has been obtained the image statistics in each segment are
gathered and the corresponding posterior class distribution is obtained using our SHCMs. The
class posterior for the groundtruth classes are shown in the middle (void pixels are shown in
red). The right column gives the MAP estimate.

4.5 Pixel Context based on Bottom-Up Segmentations 86

4.5 Pixel Context based on Bottom-Up Segmentations

Here we focus on “extending” the sliding-window approach to a more image data driven approach

as mentioned in Section 4.1.2 and Figure 4.1(c) on page 62. The main idea of the sliding-window

approach is to mask an image area, the inside of the sliding-window, and classify its content

to one of the object-classes. As already pointed out, one of the main drawbacks is that, since

the window is fixed in size, it can contain multiple object categories. One possible solution of

this problem was introduced in the previous section with the mixture models. In this section

we propose another method. Instead of having fixed sized rectangular regions, each image is

segmented into multiple regions using various approaches to bottom-up segmentation. The idea

is to retrieve multiple over-segmentations3 for each image. A short introduction into bottom-up

segmentation algorithms is now given, and we then evaluate the suitability of this approach

to semantic image segmentation using SHCMs as the model of choice. Technically, any visual

model that classifies image areas can be used.

4.5.1 Introduction to Bottom-Up Segmentation

There is a variety of bottom-up image segmentation techniques. For the experi-

ments here we focus on three algorithms: normalised-cuts [Shi and Malik (2000),

Cour et al. (2004)], Felzenszwalb [Felzenszwalb and Huttenlocher (2004)], and mean-shift

[Georgescu et al. (2003)]. Other common techniques, which did not perform well in our setting,

are watershed segmentation (edge based) [Beucher, 1992] and k-means segmentation (colour,

texture, and location based).

Figure 4.14 shows some example segmentations from the three methods we focus on in

the left column. The borders of the segments are colour-coded with the following meaning:

black=contains one object-class only; red=contains multiple object-classes; blue=contains an

object-class and areas labelled as void. Note that the images are mostly over-segmented. Dif-

ferent segmentation parameters introduce differently shaped/sized segments for the same seg-

mentation algorithm. It is obvious that the Felzenszwalb and mean-shift methods produce

more “image driven” segments, whereas the normalised-cuts approach results in equally sized
3Here over-segmentation refers to the fact that segments break objects apart and ideally only one type of

object is contained within each segment.

4.5 Pixel Context based on Bottom-Up Segmentations 87

segments, similar to super-pixels [Ren and Malik (2003)].

The abbreviations for the segmentation parameters are as follows:

FH-0.2-100-50: Felzenszwalb and Huttenlocher (2004) segmentation algorithm. Their method

defines a graph over the image pixels and finds the globally optimal segmentation,

according to their criteria, using a maximum spanning tree based algorithm. The

main parameters are: σ = 0.2 defines a Gaussian blurring of the image which, if

small enough, removes artifacts only; k = 100 sets the scale of observation, where

a larger k encourages larger segments; smallest segment=50 sets the minimum size

of a segment and is enforced in a post-processing step;

MSO-9-5-100: Comaniciu and Meer (2002), Georgescu et al. (2003) introduce adaptive

mean-shift, using locality-sensitive hashing to reduce the computational complex-

ity of the method. The following parameters are available: σspatial = 9 defines the

bandwidth for the spatial (x,y) subspace; σrange = 5 sets the bandwidth for the

range (LUV) colour subspace; smallest segment=100 defines a minimum size for

the segments;

NC-1-100-G: Shi and Malik (2000), Cour et al. (2004) introduce normalised-cuts as a graph

partitioning method that is based on the generalised eigenvalue problem and is ap-

plied to a graph defined by a global criterion. The parameters are: basis-size=1 gives

an option to resize the image before application of normalised-cuts; #segments=100

defines the number of segments returned by the algorithm; G=”grey-level image”

means that the grey-level version of the image is used (intensity image);

4.5.2 Combining Multiple Segmentations

Given an image segmentation Sj the image regions defined by the segments can be classified.

The texton histogram hj for each segment in Sj is computed and classified using Kullback-

Leibler divergence (see Section 4.1.3). This defines a posterior distribution over the object-

classes for each pixel p. Figure 4.14 on page 85 shows such object-class posteriors for the

groundtruth class in the middle row. We now use a set of segmentations {S1, . . . , Sn} to assign

n posterior distributions dj,p to each pixel p. To retrieve the final classification cp for each pixel

4.5 Pixel Context based on Bottom-Up Segmentations 88

Figure 4.15: Combination of multiple segmentations. A set of segmentations (different
algorithms and parameters) is used to improve the results over a single segmentation. Each
segmentation results in widely differing independent image segmentation boundaries and thus
classifications of those segments. Combining the various classifications obtained for each pixel
improves the overall performance.

NC,1,100,G NC,1,200,G NC,1,300 NC,1,500 FH,0.8,800,80 FH,0.2,1000,200 FH,0.2,100,50

71.8% 71.2% 70.8% 70.2% 71.2% 71.2% 70.9%

FH,0.2,200,100 FH,0.2,200,200 FH,0.2,500,200 FH,0.2,50,50 FH,0.5,500,200 MSO,9,5,100 MSO,5,9,100 combined

72.2% 72.6% 72.7% 70.7% 73.7% 71.1% 71.7% 76.8%

Table 4.6: Segmentation results. The table gives the pixelwise classification performance
if only one segmentation was used. The parameters are as described in Section 4.5.1. In
comparison it can be seen that combination of these 14 segmentations results in a much higher
performance.

(shown in Figure 4.15 on the right), the MAP estimate of

P (cp| {S1, . . . , Sn}) ∝
n∏
j=1

dj,p

is computed. This corresponds to a product of experts model (also see Section 2.2.2) defined

by the multiple segmentations.

4.5.3 Experimental Evaluation

The following experiments show that this data driven pixel context selection is beneficial over

the crude approach of the sliding-window method. We show that a single bottom-up segmenta-

tion does not improve over the sliding-window method, but the combination of several different

segmentations results in a clear improvement.

All experiments were carried out on the 9-class MSRC dataset using the previously in-

troduced SHCMs with 8000 visual-words. Figure 4.17 on page 90 gives segmentation results

retrieved by combining 14 different segmentations. In comparison with Figure 4.7 on page 76 it

4.5 Pixel Context based on Bottom-Up Segmentations 89

0 5 10 15
70

71

72

73

74

75

76

77

78

number of segmentations combined

pe
rf

or
m

an
ce

Figure 4.16: Combination of segmentations. This experiment uses a set of 14 segmenta-
tions S = {S1, . . . , S14}. Each entry gives the mean and one standard deviation of randomly
sampled combinations C of n segmentations combined, i.e. C ∈ P(S). The individual data
points show the performance of each combination. It is clear that the performance increases
dramatically up to the combination of 5-10 segmentations.

is obvious that the final object-segmentations follow the object boundaries more closely and the

“blurring” effect caused by the sliding-window can be avoided. The segments still “bleed” into

the surroundings, which results in jagged object boundaries as can be seen in the top image in

Figure 4.17.

Figure 4.16 and Table 4.6 give an idea of how important it is to use multiple segmentations

with different parameters. The table shows that most of the segmentations perform equally

well if used individually. However, the combination gives a significant improvement over the

individual performances and also outperforms the sliding-window approach (multiple segmenta-

tions: 76.8% vs. sliding-window: 75.2%). The plot visualises the improvement of the pixelwise

classification with increasing number of segmentations that are combined. For each number

the mean and one standard deviation are shown, computed over randomly sampled subsets of

the 14 segmentations.

4.5 Pixel Context based on Bottom-Up Segmentations 90

cow

water

grass

tree building

road

bycicle

(a) (b) (c)

Figure 4.17: Combining multiple segmentations results. (a) Original photographs.
(b) Groundtruth class-labels. (c) Output class maps obtained with KL divergence, when the
class posteriors of 14 different segmentations where combined. See Figure 4.7 on page 76 for
comparison.

4.5.4 Discussion

We have shown that using multiple segmentations instead of a sliding-window can improve

performance. Additionally, the resulting image segmentations are visually more pleasing when

the bottom-up segmentation scheme is used, in contrast to the sliding-window classifier which

results in more “blurred” object segmentations. Although classifying the segments is faster than

using the sliding-window method, retrieving the multiple segmentations itself can be quite slow

and thus the overall system can be significantly slower depending on the type and number of

segmentations that are used.

Other methods for combining the posteriors of the segments were investigated. Specif-

4.6 Conclusion 91

ically, we looked at belief propagation based approaches in order to keep the posteriors of

neighbouring segments (and overlapping segments over multiple segmentations) consistent. It

did improve good segmentations further, but could degrade worse segmentations as it affected

the neighbouring segments as well. It is possible to take the agreement of the classifications

for overlapping segments into account and thereby retrieve a confidence score for each pixel.

Technically, this could also be done for the sliding-window method, but given the data driven

bottom-up context it might be more meaningful in this setup.

4.6 Conclusion

In this chapter we have introduced a new technique for the estimation of compact and efficient,

generative single-histogram models of object-classes. Those models were applied to simultane-

ously segment and recognise objects in images. Different histogram similarity functions have

been compared. In the case of single-histogram class models, the Kullback-Leibler divergence

has been demonstrated to achieve higher accuracy than widely used alternatives such as L2

and χ2 distances. Despite their simplicity and compactness, the SHCMs have proved as dis-

criminative as keeping around all exemplar histograms (and classifying via nearest neighbour

approaches). Their main advantages are their storage economy, computational efficiency, and

scalability. We note that the computational efficiency is a significant advantage, since meth-

ods for speeding up nearest neighbour search, such as k-D trees, do not perform well in high

dimensions. Here the number of dimensions equals the number of histogram bins and is of the

order of thousands. Thus, finding the closest exemplar (in k-NN classification) reduces to a

linear search through all the exemplars, whilst for single-histogram class models the search is

only linear in the number of classes. The more recent work of Boiman et al. (2008) proposes a

similar approach and argues that image-to-class nearest neighbour matching leads to a strong

classifier. They also argue that quantisation can hurt nearest neighbour classification, which

corresponds to our findings, where the performance increased with larger codebook sizes. In-

stead of employing a form of nearest neighbour matching, as we do, it would also be possible to

train a classifier, such as SVM, on the texton histograms extracted by the sliding-window, or

to train a multi-class logistic regression model. Preliminary results with the logistic regression

model show a significantly worse performance. In the region-level classification the logistic

4.6 Conclusion 92

regression model performs perfectly on the training data, but compared to the SHCMs signifi-

cantly worse on the test data. This suggests that the logistic regression overfits and therefore

does not generalise well. It needs to be pointed out that the number of training exemplars

(269) is not very large considering the number of classes (9) and weights (1024 visual words in

this experiment, due to memory limitations) to be estimated.

The efficiency of our method plays an important role in the next chapter, where the single-

histogram class models will be employed in the Random Forest framework. Chapter 5 focuses

on fundamentally different techniques, but some of the concepts presented here will be used.

We introduced two possible solutions to overcome the problem of multiple object categories

occurring inside the sliding-window region: (i) the multi class mixture model, and (ii) the

approach based on multiple bottom-up segmentations. Chapter 5 extends the sliding-window

method into yet another direction. Random Forests are used to learn the “context” for a pixel,

i.e. the shape and relative position of the rectangular regions, discriminatively. The following

chapter also reports results for the CRF based post-processing step (see Section 2.2.4). This

additional step could also be applied to the results in this section to give a further improvement.

Chapter 5

Semantic Segmentation via a

Discriminative Model

This chapter leverages the generative texton models from the previous chapter by embedding

them into a discriminative classifier, the Random Forest. So far segmentation was accomplished

by means of a fixed sliding-window to define the context of an image pixel and consequently

classifying it. We also investigated the use of bottom-up segmentation to define the pixel con-

text. Here we use the Random Forest classifier to select discriminative Haar-like feature kernels.

In addition to the patch based texton features additional low-level features are employed (HOG

and RGB). All these features are combined, taking advantage of the excellent feature selection

properties of the Random Forest classifier.

Before we propose and evaluate the fully fledged system, the single-histogram class models

(SHCMs from Section 4.2) and the nearest neighbour classifier from the previous chapter are

formulated in the Random Forest framework. This way we can provide insight into the discrim-

inative power based on the example of feature kernel selection, or more specifically, selection of

the pixel context. We express the different feature kernels using a common description which

enables us to discuss their relationships more easily. The impact on the performance of low-

level features such as HOG, RGB, and SHCMs is evaluated on the segmentation task, using

the common MSRC and VOC2007 datasets (Chapter 3). Our system shows state of the art

performance on this task. As mentioned before Random Forests carry good multi-class classifi-

cation capabilities, and in addition to the discriminative classification empirical class posteriors

are returned as well. In Section 5.4 it is shown how these posteriors can be used in the CRF

5.1 Random Forests for Object Segmentation 94

framework (see Section 2.2.4) to further improve the segmentation of objects in an image.

5.1 Random Forests for Object Segmentation

As presented in Section 2.2.2, Random Forests are suitable for multi-class classification tasks

and the simplicity of the node-tests allows for a wide range of possible input feature kernels and

low-level feature descriptions. We first introduce a feature description and feature kernels that

are suitable for the object segmentation task and are thus able to take advantage of the feature

selection abilities inherent to the Random Forest classifier. The feature kernels we present in

the next section are related to the Haar-like features used by Viola and Jones (2001). Our

general description enables us to point out the relations to the node-tests used by others: pixel

intensity comparisons in Lepetit and Fua (2006), pixel differences in Shotton et al. (2008) or

texton “responses” in Shotton et al. (2006), Savarese et al. (2006). We then transfer the classifier

from Section 4.2 into this same framework.

Given these features the Random Forest is trained by learning a set of decision-trees sep-

arately. These trees can be trained on a sub-sampled set of all the labelled training pixels,

to further improve their independence [Breiman (2001)]. The pool P of node-tests is always

randomised. Testing proceeds by applying all trees of the Random Forest to each input pixel

p in the test image. The per-pixel class posterior is achieved as the average of the posteriors

across all trees, as defined in the Random Forest section. Now the formulation of the node-tests

is introduced.

5.1.1 A General Node-Test

Previously used node-tests1 as in Shotton et al. (2006) and Yin et al. (2007) as well as our

node-tests based on the models from Chapter 4 can be described in one framework which is

presented here. In Section 5.3 we point out the correspondences between the various possible

node-tests and give a unified interpretation.
1The node-test is the test that is performed in each node to determine if the data point is passed to the left

or right child-node, also see Section 2.2.2 for the basic definition.

5.1 Random Forests for Object Segmentation 95

green

red

test−pixel p

(b)

offset

test−pixel p

(a)

difftest

R1

R2

abstest

R

Figure 5.1: Node-tests. (a) A node-test can be based on filter responses accumulated over a
single rectangular region as in Shotton et al. (2006). (b) Alternatively, responses accumulated
over two (or more) rectangles can also be used, e.g . Yin et al. (2007). The pixel differences
in Lepetit and Fua (2006) and Haar-like responses in Viola and Jones (2001) are special cases
of this general description.

For a pixel in position p in image I, a general node-test tp may be described as:

tp =
∑
r∈S

wr · f (5.1)

where r indexes one or two rectangles (i.e. S = {1} or {1, 2}), wr describes a filter/mask

selecting the pixels in the rectangle Rr and feature channel Cj. It defines a weighting for each

dimension of the feature vector f . This feature vector describes the feature channels C for

each pixel in the image. For example, given an RGB-colour image I of size |I| = 120 × 200,

dim(f) = 120× 200× 3 and Cj = {1 + (j − 1) · |I|, . . . , j · |I|} for the three colour channels C1,

C2 and C3.

wr acts as a mask and contains 1 for the corresponding i ∈ {1, . . . , |I|} ∩ Rr ∩ Cj and 0

otherwise, we write this as wr
i|RrCj = 1. The rectangles Rr are positioned relative to the test-

pixel p and thus wr also depends on p. The size and relative position of rectangles Ri greatly

influences the shapes and the amount of context that is captured or can be discriminated by

the node-test.

If two rectangles are used (S = {1, 2}), often the difference of the accumulated responses

of the two rectangles is computed as in Yin et al. (2007). This is illustrated in Figure 5.1(a,b)

and an example picture with the responses is given in Figure 5.2. Note that this accumu-

lated response, together with the threshold λ, defines the node-test (2.6) on page 96. This

threshold is set independently for each node-test (rectangle configuration) and corresponds to

a threshold on the mean response in the rectangular area or on the weighted difference of mean

responses for two rectangles. This general description encompasses the linear classifier used in

Bosch et al. (2007b), where pyramid histograms of visual-words are used as feature f to describe

5.1 Random Forests for Object Segmentation 96

Figure 5.2: Pixel-differences. The three top rows visualise the response (right column) of
a node-test that is described by a centre 20× 20 pixel rectangle (left column). Shown are the
three versions for the red, green, and blue channel (top to bottom). The bottom row shows
a node-test which computes the difference between the red-channel response in R1 and the
green-channel in R2, i.e. w1

i|R1
= 1 and w2

i|R2
= −1 (see text). The test pixel p is marked by

the black dot. The right image shows the corresponding response.

5.2 Generalising Single-Histogram Class Models in Random Forests 97

the whole image. Thus (5.1) simplifies to tp = w · f and the weight vector w is filled with ran-

dom weights. The pixel-differences used in Lepetit and Fua (2006), Winn and Criminisi (2006),

Shotton et al. (2008) correspond to w1
i|R1C3

= 1 and w1
i|R2C1

= −1 where the two rectangles

degrade to two points positioned relative to p, and the red channel C1 is subtracted from the

blue channel C3, for example. In Shotton et al. (2006, 2008) for example, the feature vector f

corresponds to a texton assignment to each pixel. Responses over one rectangle are described

by the count of a specific texton occurrence in the rectangle, i.e. w1 masks the positions in the

rectangle R1 that correspond to a specific texton ID/feature channel Cj.

Next we introduce how the SHCMs from the previous chapter can be used in this framework,

and in Section 5.3 we relate how the commonly used special cases and low-level image features

from Section 2.1 fit into this formulation.

5.2 Generalising Single-Histogram Class Models in Ran-

dom Forests

In this section we embed the single-histogram class models from Chapter 4 into the Random

Forest framework. We show first how the nearest neighbour classifier can be implemented by a

Random Forest (decision-tree) and then discuss how the generalisation of this framework leads

to the features commonly used in Random Forests. Note that the single-histogram class model

based nearest neighbour classifier of Chapter 4 is not learnt discriminatively and does not learn

spatial information about the object-classes. It only captures crude context by means of the

sliding-window. Both these shortcomings are overcome by the use of Random Forests and their

feature selection capabilities.

5.2.1 Casting the Nearest Neighbour Classifier into Decision-Tree

Terminology

In Section 4.2.1 it is shown that given an image patch, the maximum likelihood estimate of

its class is equivalent to a nearest neighbour classifier on single-histogram class models, where

similarity is measured using Kullback-Leibler divergence. We now cast this nearest neighbour

formulation into the Random Forest framework in order to motivate the additional features and

5.2 Generalising Single-Histogram Class Models in Random Forests 98

to point out the capabilities of Random Forests. This first step simply reproduces the results

from the previous chapter and is only meant to simplify the direct comparison of the basic

SHCMs to the capabilities added by the Random Forest classifier. In Section 4.3 the single-

histogram class models are used to segment a test image into object-class regions by means of a

sliding-window classifier. In detail, a sliding-window s is used to assign the object-class-label ĉ

to the centre pixel p of s. With h being the distribution over textons in window s and qc being

the single-histogram class models (SHCMs) the classification result for p is ĉ, as in (4.1):

ĉ = arg min
c

(DKL(h||qc)) (5.2)

We first note that finding the nearest neighbour class histogram qĉ using (5.2) can be

accomplished by a series of hierarchical tests that compare the test window histogram h to

a pair of SHCMs and select the more likely one. The goal is to reformulate this pairwise

comparison into a single efficient node-test of the form (5.1), that can be used in a decision-

tree. This can be achieved by combining two SHCMs qi and qj into wi,j = log
(

qi

qj

)
. Now we

define the node-test tp which compares a test-histogram hr (computed from one rectangle Rr)

to two class models qi and qj in a single test (5.3):

DKL(hr||qi) < DKL(hr||qj) ⇔ tp < 0 with tp = wi,j · hr (5.3)

Note that as opposed to the examples given in Section 5.1.1 here wi,j is not just 1 or −1, but

each feature channel (here texton) is weighted with a real numbered weight induced by the

object-class models (SHCMs). The node-test tp defined in (5.3) is smaller than 0, if and only

if class model i is more likely to explain the rectangle Rr than class model j.

If there are C object classes, i.e. C SHCMs qc with c ∈ {1, . . . , C}, a tree of depth C − 1

can compute arg minqc (DKL(h||qc)), by means of a series of tests as defined in (5.3) (see

Figure 5.3). These tests need to compare all possible pairs except the ones that can be excluded

due to transitivity. This scheme is called fixed-tree in the following. One might think that using

such comparisons the number of tests can be reduced to log(C), however, in general nearest

neighbour search cannot be performed in log(C). See, for example, Arya et al. (1998) for

5.2 Generalising Single-Histogram Class Models in Random Forests 99

grass sheep sheep grass sheeptree tree cow

cow
gras

s

tree

gr
as

s

tre
e

cow

tree

sheepgr
as

s

tr
ee

sh
ee

p

sh
ee

p

grass

cow

Figure 5.3: Fixed-tree. Each node compares the (so far) arg minqc to a qc that is not included
in any of the parent tests in that branch of the tree. The test at the root node compares an
arbitrary pair of qi and qj. Instead of C tests that are needed for the naive computation of the
minimum only C − 1 tests (the depth of the tree) are needed here. Here the tree classifies into
one of the four classes (grass, cow, tree, sheep) and thus needs to perform 3 tests.

complexity bounds for approximate nearest neighbour searches or Friedman et al. (1977) for

kd-trees to find best matches in logarithmic expected time.

Experiments. A few simple experiments are carried out to confirm the equivalence to the

nearest neighbour framework to the single fixed decision-tree. The following experiments were

carried out on the 9-class MSRC dataset (Chapter 3).

The posteriors in the leaf nodes of this tree are set manually to give a classification for

the one object-class defined by the series of tests in that particular branch of the tree. As

expected this confirms the classification performance also reported in Section 4.3. Combining

multiple fixed decision-trees each using a different sliding-window size w results in a marginally

improved performance.

In the second experiment only the node-tests in the decision-tree are fixed and the empirical

class posteriors are learnt as laid out in Section 2.2.2. This results in virtually the same

performance 75.2% as in Section 4.3 with the same features (25×25 pixelwide centred windows).

This is a nice result indicating that the Random Forests learns good empirical class posteriors

that lead to the same MAP estimate as the minimisation of DKL(h||qc).

The third experiment was evaluated on the 9-class dataset as well and instead of using

the fixed tree of depth 8 (9 classes - 1), we learn a Random Forest keeping the rectangle size

fixed to 25× 25 and centred on the test-pixel (comparable to the sliding-window method from

Section 4.3), i.e. the node-tests compare DKL(hr||qi) < DKL(hr||qj) for a pair of SHCMs (i, j),

that is learnt during training, and the query-histogram hr computed over the 25×25 rectangle.

5.3 Relationship of Various Feature Types 100

single−class
grass histogram

single−class
cow histogram

cow cluster

grass cluster

c2

d3

g1
g3

c3

d1
c1

d2

g2
g4

qi

qj

Figure 5.4: Node-tests. This figure visualises a two dimensional feature space (e.g . two
visual-words). The dots represent single-class histograms and histograms computed from the
rectangles (i.e. h,qi,qj). d1 and d2 denote the coordinate axes, and d3 defines a different
projection direction, e.g . the one defined by wi,j = log

(
qi

qj

)
for a pair i, j of object-classes.

This Random Forest consists of 10 decision-trees, with each tree having a maximum depth of

15. The number of node-test that is optimised over for each node is 100, i.e. #fn = 100.

Incorporating the flexibility to select the pair (i, j) in each node-test increases the performance

marginally to 76.2% (see Figure 5.6 on page 104). One possible explanation for this small

improvement could be that a bias is “learnt”. This bias would avoid comparison of visually close

object-classes that do not occur together in the same image and do not need to be compared

directly in a node-test. For example, cows and sheep do not occur in the same image and thus

a direct comparison of those two object-classes could introduce misclassifications.

To conclude we can say that the fixed decision-tree reproduces the nearest neighbour clas-

sifier. The fact that relaxing the tree to learn the class posteriors and a further relaxation to

non-fixed trees perform equally well or slightly better than the nearest neighbour maximum

likelihood classifier (as derived in Section 4.2.1) confirms that the Random Forest in this setup

is a MAP classifier and that the empirical class posteriors estimated in the leaf nodes represent

the texton distributions for the object-classes very well indeed.

5.3 Relationship of Various Feature Types

Starting with our general description from (5.1), the previously introduced node-tests based on

SHCMs and the pixel-differences (Section 5.1.1) we can relate and interpret those seemingly

very different feature types.

5.3 Relationship of Various Feature Types 101

Consider the case where the SHCMs qi and qj have identical counts (i.e. similar occurrence

frequencies) in all but one bin/channel. Then wi,j = log
(

qi

qj

)
will be zero for all but one weight.

This is the limiting case of a single discriminative texton between the two classes. Thus single-

histogram class models are closely related to weak classifiers (i.e. node-tests) used by others,

namely: TextonBoost (Shotton et al. (2006)), where textons that are discriminative for a pair

of classes are learnt (in that case using boosting), i.e. all weights but one are zero in (5.3); and

the linear classifier (with a set of non-zero wi,js) used in the node-test of Bosch et al. (2007b).

Figure 5.4 gives a geometric interpretation of the various special cases of node-tests. All

those node-test are described by (5.1). The following points out the properties and differences

between the two main node-tests we use: gatetest and difftest. These node-tests correspond to

special cases of the general formulation where gatetest acts like a gating function putting higher

weights on more discriminative textons. Difftest describes the commonly used differences of

responses computed over rectangular regions in different channels.

Gatetest. This corresponds to the node-test described in the previous section. Gatetest

uses two fixed histograms as “reference points” and computes the difference in KL divergences

between the query-histogram (e.g . h := c1) and two single-class histograms (e.g . qi := sc

and qj := sg), e.g . DKL(c1||sc) − DKL(c1||sg). Alternatively this can be seen as a projection

onto a direction d3 which is defined by wi,j = log
(

qi

qj

)
. This is obvious as tp in (5.3) is the

inner product between the two vectors and thus interpretable as a projection onto wij. In a

sense wij is a gating function to select the discriminative textons. Feature dimensions that

are similar in both single-class histograms have small influence and dimensions that are very

different have a large influence. Thus, wij defines a projection onto a direction with relatively

high linear discrimination between the two classes. This relates to the linear classifier as used in

Bosch et al. (2007b), but here the hyperplane is induced by the SHCMs instead of being learnt.

Using a wisely chosen projection direction as Fisher’s linear discriminant might be another

option. It is obvious that wij does not need to be based on single-class histograms, but could

be based on pairs of exemplar histograms2, for example. If we approximate even further, instead

of exemplar histograms two histograms computed over rectangles R1 and R2 can be used. If

one of those rectangles lies inside one object (e.g . cow) and the other one inside another object
2I.e. the histograms computed over the training exemplar regions (one histogram per object-class per image).

5.3 Relationship of Various Feature Types 102

cells

R1

R2

c = 5 c = 20 c = 40

P
c∈{5,20,40}(gc · b)

Figure 5.5: HOG features. We use stacked HOG features (see Section 2.1.1) computed with
different cell-sizes c = {5, 20, 40} and gradient bins g = {6, 6, 12}. One block always contains 4
cells (b = 4). Each rectangle response is computed by adding the responses for one of the HOG
dimensions of a pixel. Cells partially included in the rectangle area contribute proportionally
to the included area.

(e.g . grass), then it would approximate the two exemplar histograms and thereby the SHCMs

case. If we additionally consider the limiting case of only one discriminative texton it becomes

clear that the difference between the texton counts for R1 and R2 is proportional to the weight

wij. The case of one rectangle corresponds to the test used in TextonBoost. Theoretically (5.1)

also captures multiple rectangles, but the computational complexity increases drastically and

experiments haven’t shown a significant improvement.

Difftest. Corresponds to a projection of the histogram onto one dimension of the feature

space. This projected value can be used directly as in the texton based weak classifiers of

Shotton et al. (2006). Alternatively, two of these projected values from the same or different

dimensions can be compared (e.g . tp = d2(g1)−d1(g1) compares the projection of feature vector

g1 onto dimension d2 to the projection of d1 as illustrated in Figure 5.4 on page 100). This

is closely related to the node-tests laid out in the previous paragraph, but it enables us to

employ virtually any low-level feature that defines a per-pixel response with possibly multiple

dimensions/feature-channels in the test image.

We evaluate the following features in the experiments section:

• RGB features: The node-tests are simple differences of responses computed over rect-

angles in one of the three channels (R, G, or B), see Figure 5.1(b) on page 95. These

5.4 Parameter Evaluation and Segmentation Results 103

features are used by Lepetit and Fua (2006), Winn and Criminisi (2006), but they use

simple pixel-differences instead of responses over rectangular areas.

• F17 filter bank: The 17 dimensional filter bank described in Winn et al. (2005) is used

as an additional cue in the same manner as the RGB features.

• HOG features: Since RGB and F17 based Random Forests are not strong enough to

capture the spatial variation of classes, we also introduce features based on the HOG

descriptor of Dalal and Triggs (2005). The HOG descriptor is computed for the whole

image using various cellsizes c in pixels, blocksizes b in cells, and number of gradient bins

g. This leads to a g · b dimensional feature vector for each cell (see Figure 5.5). The

stacked HOG consists of c = {5, 20, 40} and g = {6, 6, 12} oriented gradient bins for each

of the c values (with b = 4 cells in each block), resulting in 6 · 4 + 6 · 4 + 12 · 4 = 96

channels for each pixel p. It was important to have cellsizes c ranging from small 5 to large

40. Aside from that the results were not very sensitive to the choice of parameters. The

performance of HOG alone and combination with other features is shown in Section 5.4.

• Textons: Finally, textons can be used directly without SHCMs, mentioned as the limiting

case in “gatetest”. The straight forward way of using textons corresponds to the usage

of the previously introduced feature channels, i.e. each texton is treated as a “feature

channel” and the accumulated response in one rectangle defines tp and is compared to a

threshold λ. This method is used in Shotton et al. (2006, 2008).

5.4 Parameter Evaluation and Segmentation Results

This section evaluates the previously introduced ideas on standard labelled datasets introduced

in Chapter 3. It is shown that our methods perform comparably to the state of the art. The

main points that are investigated are the importance of spatial context, the influence of the

Random Forest parameters, and the combination of several low-level features.

First the influence of the rectangle size and shape together with the offset (Figure 5.1

on page 95) are evaluated. Then, we carry out a range of experiments that shed light on the

importance of the various parameters that determine the properties of this classifier, namely the

influence of the number of decision-trees and their depth, as well as the variation in performance

5.4 Parameter Evaluation and Segmentation Results 104

image without allowing offset (i.e. window centred on test-pixel)

groundtruth allowing offset

classification aeroplane posterior car posterior

Figure 5.6: Spatial context. This figure shows how an offset incorporates spatial context.
The classification with a maximum offset of 30 is in the bottom row, the one with the test-pixel
centred in the rectangle in the top row. Next to the classification are shown the posteriors for
the object-class (aeroplane) and the car class (marked “purple” in classification) that is confused
with aeroplane, if no context is used.

depending on the “randomness” introduced into each tree. The benefit of the multiple feature

types combined in the Random Forest classifier is proved with extensive experimentation on

the labelled image datasets. Finally, we give results of the full system with and without the

added CRF step (see Section 2.2.4).

5.4.1 Spatial Context: Offset and Windowsize

Starting with the fixed-tree using SHCMs we show that allowing for different rectangle

shapes/sizes as well as off centre test-pixels (see Figure 5.1 on page 95) results in a dramatic per-

formance boost. During training the node-tests added to the initial pool P (see Section 2.2.2)

reflect these differently shaped and centred rectangles and the maximisation of the information

gain ∆E takes full advantage of the discriminative learning of Random Forests by selecting the

appropriately shaped rectangles. The node-tests itself still follow (5.3) in this experiment. This

constraint will be relaxed too in the next section.

As in Section 5.2.1, the Random Forests consist of 10 decision-trees, with each tree having

a maximum depth of 15. The number of node-test randomly sampled from the pool P is 100,

i.e. #fn = 100. Out of these 100 node-tests the one that maximises the information gain ∆E

is selected for a node. Table 5.1 shows that allowing different window sizes (smallest edge of

rectangle can be 10, largest 35 pixels wide) improves the performance, as these rectangles can

5.4 Parameter Evaluation and Segmentation Results 105

window size\offset 0 10 20 30
25:25 76.2% 78.8% 81.0% 82.2%
10:35 77.7% 79.3% 80.8% 82.0%

Table 5.1: Spatial influence. The window size [smallest extend:largest extent] describes
the range of the width and height of the rectangles added to the node-test pool P . The
offset describes the maximum distance between the centre of the rectangle and the test-pixel.
Allowing for additional “freedom” especially a large offset clearly improves the performance.

adapt to the objects and encode fine/large grained structures better than a fixed window size.

The rectangles selected by means of information gain maximisation are around 23 ± 7 pixels

each dimension and tend to be slightly smaller towards the bottom of the decision-trees. The

average ratio of small side to long side is 0.69±0.19, i.e. to capture the full shape of the objects

elongated rectangles are advantageous.

However, a significantly larger improvement is achieved by allowing an offset of the centre of

the rectangles to the test-pixel, in which case the context of the test-pixel is taken into account.

In our experiments the offset settles to around 15±8 pixels in the x and y direction. Figure 5.6

illustrates how the Random Forest learns that car is unlikely to occur next to aeroplane and sky.

The important observation is that confusions like aeroplane with car are suppressed. This is

indicated by the posterior response for the car class, where there are two high response areas in

the top right image, but not in the bottom right image. It is worth noting that the classification

obtained by the context features (bottom row) has a less crisp object boundary, which can be

explained by the fact that pixels occurring near the boundary have a higher likelihood for both

classes when context is incorporated (e.g . aeroplane/grass confusion). The overall performance

however is drastically increased by allowing for this incorporation of context. Together with

the shape variations the performance increases from 76.2% to 82.0% (see Table 5.1), exceeding

the performance of the original sliding-window based on the SHCMs dramatically.

5.4.2 Number of Decision-Trees and “Randomness”

Figure 5.7 illustrates how the performance depends on the number of trees in the random

forest and the amount of randomisation introduced by means of the number of node-tests that

is optimised over using information gain. Our experiments showed that the performance does

not increase significantly if more than 20 trees are used. We use 20 decision-trees for most

experiments and 30 or 50 for the larger datasets (21-class MSRC, and VOC2007). The amount

5.4 Parameter Evaluation and Segmentation Results 106

0 5 10 15 20 25
30

35

40

45

50

55

60

65

70

75

pi
xe

lw
is

e
cl

as
si

fic
at

io
n

pe
rf

or
m

an
ce

maximum decision−tree depth

Figure 5.7: Number of decision-trees vs. “randomness” and tree depth evaluated
on the 21-class MSRC dataset. The left images shows that the number of decision-trees has a
great influence on the performance. However, the curve flattens out for more than 20 decision-
trees. The amount of randomisation effects the performance much less. If a minimum of
optimisation (e.g . #nf = 100) is performed for each decision-node the performance does not
improve much by further optimisation. The right image shows the performance in dependence
of the maximum depth of each decision-tree. The observation here is that the performance
increases with deeper trees, and the limit of 20 for most of our experiments is picked out of
memory and computational considerations.

of randomness has a much smaller influence. If the number of tests in the per node pool is

increased the accuracy improves slightly. This indicates that too much randomisation, i.e. no

information gain driven selection of the node-tests, hurts the performance. If for example the

size of the node-test pool is one, i.e. #nf = 1 (see Section 2.2.2), thus selecting the node-test

without any regards to the information gain the performance drops. It should be noted that we

would expect a decrease in performance, if the size of the node-test pool is further increased.

Assuming that the initial pool P is shared between all trees (which is not the case here) an

optimisation over the full pool would correspond to one single decision-tree, as all decision-trees

would be the same. A different initialisation of the pool P for each decision-tree assures further

independence among the decision-trees.

5.4.3 Combining Low-Level Feature Types

In this section we describe how the various feature types influence the performance of the

Random Forest segmentation task. In Section 5.3 we introduced RGB, HOG, F17 and textons

(T) as low-level features. Here combinations of these features are investigated. During training

of the Random Forest each low-level feature is treated as a separate pool of features and the

5.4 Parameter Evaluation and Segmentation Results 107

textons RGB HOG HOG,RGB HOG,RGB, HOG,RGB, CRF Others
F17 SHCMs

9-class (pixelwise) 72.8% 72.2% 75.9% 84.5% 86.0% 84.9% 87.3% 84.9% [1]
21-class (pixelwise) 40.3% 54.0% 56.3% 69.9% 71.5% 71.7% 73.7% 72.7% [2]

VOC2007 (class avg.) 13.6% 10.1% 17.4% 17.7% 19.7% 21.4% 24.4% 20.0% [3]

Table 5.2: Feature combinations. Pixelwise classification performance using various com-
bination of features. For the 9-class dataset the forest consists of 20 trees, each of a maximum
depth of 20; each node-test is picked as the best of 500 node-tests per feature using information
gain. For each node-test the threshold λ which maximises the information gain is selected. For
the 21-class dataset a forest of size 30 was used and for the VOC2007 dataset the forest size was
50. The CRF results are based on the HOG,RGB,AC17 features for the MSRC datasets and
on the HOG,RGB,SHCMs for the VOC2007 dataset. [1] Verbeek and Triggs (2008), [2] Shot-
ton et al. (2006), [3] Shotton et al. (2008).

one that maximises the information gain is selected for each node.

Table 5.2 shows the results of various feature combinations. Using all features combined by

exploiting the feature selection properties of Random Forests gives state of the art results 84.5%

on the MSRC 9-class, and 69.9% on the 21-class dataset. Shotton et al. (2006) achieved 69.6%

with a boosted classifier. It can clearly be seen that the combination of RGB and HOG gives

a very strong boost in performance. The addition of SHCMs based texton features (although

very strong alone) is not able to increase performance (probably due to redundancy with HOG

and RGB), but the discriminative learning assures that the right features are selected and

performance does not decrease. Thus the classifier is able to improve over state of the art.

Table 5.2 shows the performance of RGB only, and again the flexibility in selecting the shape

and offset of the rectangles results in increased performance (72.2%) compared to the fixed

window version based on simple visual features (colour-histograms) from Section 4.3.2 with

a pixel-wise classification performance of 67.3% (on the 9-class dataset). Sometimes also the

average class performance is reported for the MSRC datasets. Shotton et al. (2008) report 67%

on the 21-class dataset, and Csurka and Perronnin (2008) report 65%. Our system performs

worse here (59%), as it underperforms for some classes (e.g . boat 0.1%, chair 11%). Those

classes are not very well represented in the training data. Thus, it is likely to happen, that

during training of the decision-trees the node-tests and empirical class posteriors in the leaf

nodes do not represent these classes well enough, as only very few training points lie inside boat

regions for example. It is possible to account for this during computation of the information

gain which we do for the VOC2007 experiments, but due to the random sub-sampling of the

5.4 Parameter Evaluation and Segmentation Results 108

training data these classes might still be underrepresented. Adjusted sampling might solve the

problem, but possibly decreases the overall pixelwise classification accuracy. Also, normalising

the empirical class posteriors by the inverse class priors improves the performance in certain

cases.

VOC2007 [Everingham et al. (2007)]. On the very challenging VOC data our method

using RGB, HOG, and F17 achieves state of the art performance (19.7%). The purely Random

Forest based system in Shotton et al. (2008) reaches an average class performance of 20%

similar to our system. The combination of RGB, HOG, and SHCMs results in 21.4% average

class performance and improves even further in combination with the CRF (24.4%) in the

following section. See Table 5.2 for a comparison. It should be noted that SHCMs based node-

tests are significantly slower than the simpler low-level feature based node-tests due to the more

complex computations.

5.4.4 Full System with CRF

Here we give results for the full system that employs a CRF using the unary potentials obtained

with the Random Forest classifier on a combination of low-level features3 as described in the

previous section.

CRF Model for multi-label image segmentation. The energy we use for our segmenta-

tion task follows the basic formulation of (2.7). We use unary potentials ψ that are based on the

output of the respective classification algorithm, i.e. the object-class posterior probabilities. In

addition we use a colour term π to define Edata(c, I) =
∑

i (ψi(ci, I) + π(ci, I)). We compute π

based on a Gaussian mixture model estimated from labels inferred on a per image basis, using

(5.4) with π = 0. The colour model is included to capture the colour distribution peculiar to

that image in addition to the colours captured by the respective classifier, that was trained

on all training images and is already included in the posteriors/unary term ψ. The last term

in the energy function is the contrast sensitive Potts model φ defining Esmooth [Boykov and

Jolly (2001)]. It depends on the d dimensional colour difference vector gij ∈ Rd, between pixel

i and j. Then,
3HOG, RGB, and F17 on the MSRC dataset and HOG, RGB, and SHCMs on the VOC2007 dataset.

5.4 Parameter Evaluation and Segmentation Results 109

image MAP posterior CRF w/o colour CRF with colour
9-class Ppix 86.0% 87.3% 85.1%

Figure 5.8: The CRF helps to retrieve crisper object boundaries. Using an additional per
image colour model improves “good” classifications further, but can hurt certain cases, e.g . last
row. (Note that CRF with colour is not the second iteration after CRF w/o colour, as different
parameters determined with cross-validation are used)

− logP (c|I) =
∑
i

(ψi(ci, I) + π(ci, I)) +
∑
ij∈I

φ(ci, cj,gij) (5.4)

describes the CRF energy that we minimise using TRW-S to retrieve the final segmentation,

with ci being the label for pixel Ii.

This CRF model is used with and without the per image colour model adaption, i.e. stopping

after the first iteration or using a second iteration together with the estimate for π computed

based on the labelling that was returned by the first iteration. We use TRW [Kolmogorov (2005)]

to minimise the energy in (5.4) and use the class posteriors from the Random Forest as unary

5.4 Parameter Evaluation and Segmentation Results 110

potentials ψ. The results in Figure 5.8 show that the CRF improves the performance slightly,

but more importantly improves the visual appearance of the segmentation. Using this additional

colour model improves ‘good’ segmentations further see Figure 5.8 (aeroplane, building), but

can deteriorate ‘bad’ classifications (black cow in the last row). In general the results are very

sensitive to the CRF parameters.

The performance on the 9-classes (87.3% without colour model; 85.1% with colour model)

is shown in Figure 5.8. For the 21-classes we achieve 73.7% without colour model and 71.6%

with the colour model. These results exceed state of the art performance or perform equally

well [Shotton et al. (2006, 2008), Verbeek and Triggs (2008)]. On the VOC2007 data we achieve

24.4% average class performance, which outperforms the raw results by Shotton et al. (2008)

slightly. Figure 5.9 and 5.10 show example images for the 21-class MSRC and the VOC2007

datasets, together with the per class pixelwise classification accuracies in percent. Again, the

colour model improves good segmentations further and can deteriorate bad ones as can be seen

in Figure 5.8, 5.9, and 5.10, where we also report the per class accuracies for the 21-class MSRC

and the VOC2007 datasets.

Both Shotton et al. (2008) and Csurka and Perronnin (2008) use additional higher level

classification to improve the performance. This can be achieved by first classifying the whole

image, e.g . using the BOW model, and based on this classification a prior can be assigned to

each object class. This prior is then incorporated into the posteriors returned by the decision-

tree. It is important to retrieve priors that perform sufficiently well, but assuming those the

segmentation performance can be increased dramatically. Csurka and Perronnin (2008) report

40% using image level priors and Shotton et al. (2008) report 42% with detection level priors

from the TKK system4. This way, Shotton et al. improve their raw results from 20% to 42%.

Note that our raw result is 22%. These observations suggest that the use of more global context

is necessary for very good object segmentation, especially in the highly cluttered images of the

VOC datasets. The segmentation task of the VOC2008 is won with a method based on Csurka

and Perronnin (2008), again using image level priors.
4TKK is the winner of the segmentation challenge [Everingham et al. (2007)]. The only “real” entry into this

challenge was by Brooks who achieved 8.5%. The TKK score stems from an object detection algorithm where
a bounding box was treated as the segmentation for the corresponding object.

5.4 Parameter Evaluation and Segmentation Results 111

image groundtruth MAP w/o colour model w/ colour model
71.5% (57.4%) 73.7% (58.8%) 71.6% (57.7%)

plane bike bird boat body book bldng car cat chair cow dog face flower grass road sheep sign sky tree
76.4 70.4 18.0 0.1 39.3 83.0 66.4 62.7 44.5 10.9 78.7 34.1 85.7 44.6 95.6 84.8 68.8 26.0 92.6 79.2
| | | | | | | | | | | | | | | | | | | |

Figure 5.9: 21-class MSRC results: Example images provide an idea of the quality of the
segmentations. These images are obtained using the CRF with and without the colour-model
together with the unary potentials from the Random Forest with HOG,RGB,F17 as described
in Table 5.2 on page 107. MAP denotes the classification according to the unary potentials
only. Both Ppix and (Pavg) are reported.

5.4 Parameter Evaluation and Segmentation Results 112

image groundtruth MAP w/o colour model w/ colour model
(21.4%) (24.4%) (22.7%)

plane bike bird boat bottle bus car cat chair cow table dog horse mbike prs plant sheep sofa train tv bg
33.2 21.3 23.0 16.2 6.4 25.6 29.9 6.0 15.3 17.5 31.3 40.9 63.3 37.6 57.3 9.7 5.8 8.5 33.0 26.8 4.1
| |

Figure 5.10: VOC2007 results: Example images provide an idea of the quality of the seg-
mentations. These images are obtained using the CRF with and without the colour-model
together with the unary potentials from the Random Forest with HOG,RGB,SHCMs as de-
scribed in Table 5.2 on page 107. MAP denotes the classification according to the unary
potentials only. (Pavg) is reported.

5.5 Conclusion 113

5.5 Conclusion

This chapter builds on top of Chapter 4 and combines the single-histogram class models

(SHCMs) introduced there with the capabilities of discriminative learning provided by the Ran-

dom Forest classifier. Using a priori knowledge in form of SHCMs to compute a weighted sum

of textons occurring in a rectangular region near the test-pixel provides strong initial node-

tests. A set of experiments showed that the Random Forest can select appropriate feature

kernels (rectangle shapes, sizes and positions) to improve the sliding-window based classifier

from the previous chapter. Instead of SHCMs we also investigated the use of exemplar his-

tograms directly. Although the results are not reported here, in addition to massively increased

computational complexity the results did not show a significant improvement.

We then relate these globally learnt class models to various global, local and context-rich

low-level feature types. The feature kernels used in other work Bosch et al. (2007b), Lepetit

and Fua (2006), Shotton et al. (2008, 2006) are interpreted as special cases of the general

family introduced here. Our thorough experimental evaluation shows that the complete system

performs similar to state of the art or better.

Chapter 6

Harvesting Images from the Web

The Internet provides vast numbers of images often together with some meta information

describing the image content. Common sources are web-pages where the text describes the

images contained on the web-page. Flickr also provides millions of images together with user

defined tags that describe the image content. Even though there are many images available on

the net, it is not straight forward to retrieve a set of images belonging to one specific object

category.

Our objective in this chapter is to harvest a large number of images of a particular class

automatically, and to achieve this with high precision. Our motivation is to provide training

datasets so that a new object model can be learnt effortlessly. The idea is to use the supervision

provided by the content of web-pages to learn visual object-class models. Following Berg and

Forsyth (2006) we download all web-pages including their images that are returned for a specific

query, e.g . penguin. After describing the exact procedure (summarised in Figure 6.1) as well

as reporting statistics about the images retrieved, we discuss the advantages of an intermediate

step to remove drawings and sketches in Section 6.3. In Section 6.4 it is shown that meta-

data and text attributes on the web page containing an image provide a useful estimate of the

probability that the image is in-class, and thence can be used to successfully rank images in the

downloaded pool. In Section 6.5 we show that this probability is sufficient to provide (noisy)

training data for a visual classifier, and that this classifier delivers a superior re-ranking to that

produced by text alone. In Section 6.7 we give a thorough comparison to the work of Berg and

Forsyth (2006) and show that our automatic method achieves superior ranking results. It is

further shown that our visual object-class models can successfully re-rank images returned by

6.1 Related Work 115

1. Download images and meta-data for new class (e.g . “lion”) using
WebSearch &GoogleImages (Section 6.2).

2. Filter images: remove drawings&symbolic images (Section 6.3).

3. Rank images based on text-attributes using the Bayes classifier (Sec-
tion 6.4).

4. Train the visual SVM classifier on text-ranked images (Section 6.5).

5. Rank all images retrieved in step 1. (or step 2.) using the visual
classifier.

Figure 6.1: Overview of the text+vision (t+v) image harvesting algorithm.

Google Image Search to significantly improve the precision at low recall.

Before presenting our own method, we give an overview of related work. Recently there have

been a few major contributions to solve this or related problems, as the problem of learning

visual object-class models without the need of tedious manual labelling is very important and

the web provides an ideal source to gather such information cheaply.

6.1 Related Work

Now an introduction of work that uses images from the Internet together with available de-

scriptions such as user defined tags or the context on web-pages for vision based image ranking

or learning is given.

One of the earliest attempt on this problem is the work of Lin et al. (2003). It addressed

the problem of re-ranking images returned by an image search engine. Their approach was

solely based on text and context information and did not learn a visual model of any form.

Global context is incorporated by using a probabilistic model that assigns a relevance to web-

pages that link to specific images. Later on Fergus et al. (2004, 2005a) learn visual models to

re-rank images returned from a web image search engine. Fergus et al. (2004) investigate the

possibilities of unsupervised or semi-supervised learning of models, based on images returned

by Google image search. The authors mainly use their approach to re-rank the returned images,

using a model that was learnt from the initial set of retrieved images. The main assumption

states that the returned images reflect some consistency which depends on the query (object-

class). For example, searching for penguins results in a set of images which contains many

6.1 Related Work 116

penguins. Even though this set still includes junk images a model for penguins can be learnt

using a robust method. Fergus et al. (2005a) learn a topic model from the dataset. It assigns

a topic distribution to each image and allows the authors to retrieve a ranked list of all images

for each topic, i.e. each list ranks the images based on their probability of containing that

topic. The problem of selecting the right topic, i.e. the penguin topic in this example, is

solved by using an additional set of images with a higher proportion of in-class images. This

validation set is retrieved by downloading the top five images returned by Google Image Search

for a query translated into six languages, thus leading to up to 30 training images. The topic

that best explains this validation set is selected and used for the final ranking. The method

in Fergus et al. (2005a) involved visual clustering of the images by using probabilistic Latent

Semantic Analysis (pLSA) [Hofmann (2001)] over a visual vocabulary. Li et al. (2007) use a

Hierarchical Dirichlet Process instead of pLSA, and Vijayanarasimhan and Grauman (2008) use

multiple instance learning to learn the visual models. However, for all these methods the yield

is limited to about 1000 images by common image search engines. Another related interactive

approach is presented by Collins et al. (2008).

Berg and Forsyth (2006) overcome the download restriction by starting from a web search

instead of an image search. This search can generate thousands of images. Their method

then proceeds in two stages: first, topics are discovered based on words occurring on the web

pages using Latent Dirichlet Allocation (LDA) [Blei et al. (2003)] on text only. Image clusters

for each topic are formed by selecting images where nearby text is top ranked by the latent

topic. Following this, several relevant clusters are manually selected and a model based on

text, colour, shape and texture is learnt. This model is used to re-rank the downloaded images,

thereby creating datasets which contain about 81% of relevant images in the top returned 500

images. Note, the user labelling of clusters avoids the problem of polysemy, as well as providing

good training data for the visual classifier. The method succeeds in achieving a greater yield,

but at the cost of manual intervention.

Others have used text and images together, however in a slightly different setting. For

example, Barnard et al. (2003) use groundtruth annotated images as opposed to noisy anno-

tation stemming from web pages, as in our case. Other work of Berg et al. (2004) uses text

from the Internet, but focused on identifying a specific class rather than general object-classes.

6.2 The Datasets 117

Morsillo et al. (2008) present a generative model that combines generative and discrimina-

tive components and uses minimal user interaction to learn this combined model. Wang and

Forsyth (2008) also combine text and vision and focus on merging the text- and vision-ranking

into a combined ranking. They use Wikipedia to train the text-model and Caltech and Flickr

images to train the visual model. As will be seen in Section 6.6 and in Section 6.7 one advan-

tage of our system is that once the visual model is learnt we do not rely on the text ranking

anymore, and are thus able to compare our performance to previous methods such as Berg and

Forsyth (2006) where only the image datasets are provided.

6.2 The Datasets

This section describes the methods for downloading the initial pool of images together with

associated meta-data from the Internet. For the purposes of training classifiers and for assessing

precision and recall the downloaded images are annotated manually for 18 classes: airplane (ap),

beaver (bv), bikes (bk), boat (bt), camel (cm), car (cr), dolphin (dp), elephant (ep), giraffe (gf),

guitar (gr), horse (hs), kangaroo (kg), motorbikes (mb), penguin (pg), shark (sk), tiger (tr),

wristwatch (ww), zebra (zb).

6.2.1 Data Collection

We compare three different approaches to downloading images from the web. The first approach,

named WebSearch, submits a single query word to Google web search and all images that are

linked within the returned web pages are downloaded. The query could also consist of more

specific descriptions such as “penguin animal” or “penguin OR penguins”, but we focus on single

word queries for the experiments in this chapter. Google limits the number of returned web

pages to 1000, but many of the web pages contain multiple images, so in this manner thousands

of images are obtained. The second approach, ImageSearch, starts from Google image search

(rather than web search). Google Image Search limits the number of returned images to 1000,

but here each of the returned images is treated as a “seed” – further images are downloaded

from the web page from where the seed image originated. The third approach, GoogleImages,

includes only the images directly returned by Google image search (a subset of those returned

by ImageSearch). Images smaller than 120 × 120 and exact duplicates are discarded. In

6.2 The Datasets 118

in-class non-class
good ok

non-abst. abstract non-abst. abstract

Figure 6.2: Image annotations. Example images corresponding to annotation categories
for the class penguin.

addition to the images, text surrounding the image HTML tag and several textual attributes

are retrieved:

context10: 10 words (no HTML-tags) before and after the image tag.

contextR: 11th to 50th words (no HTML-tags) before and after the image tag.

filename: filename part of the image URL.

filedir: directory part of the image URL.

websitetitle: text contained in the HTML title-tag.

imagetitle: text in the title attribute of the image-tag.

imagealt: text in the alt attribute of the image-tag.

Empirical tests revealed that using the plural version or more specific terms such as “king

penguin” lead to different, possibly better images. This could be used to retrieve even more

images and using WordNet1 or similar services it can also be automated. Initial experiments

on Flickr revealed that the available tags are very noisy, which is why we focus on web-pages.

6.2 The Datasets 119

6.2.2 Groundtruth Annotation

Even though the goal is to automatically build image datasets, groundtruth is needed for the

evaluation of our method. We also need groundtruth for a few object-class queries for the

training of our class independent text ranker in Section 6.4. Currently the most reliable and

simplest approach is to manually label the images. There are possibilities to exploit indirect

user feedback, e.g . from people clicking on images they receive for one of their image search

queries (e.g . on Google). However, we do not have such data available and therefore manually

assign image labels using a web interface. In a similar manner to Fergus et al. (2005a), images

are divided into three categories:

in-class-good:Images that contain one or many class instances in a clearly visible way (without

major occlusion, lighting deterioration or background clutter and of sufficient size).

in-class-ok: Images that show parts of a class instance, or obfuscated views of the object due

to lighting, clutter, occlusion and the like.

non-class:Images not belonging to in-class.

The good and ok sets are further divided into two subclasses:

abstract:Images that do not look like realistic natural images (e.g . drawings, non realistic

paintings, comics, casts or statues).

non-abstract: Images not belonging to the previous class.

Example annotations for the class penguin are shown in Figure 6.2. As is usual in annotation

there are ambiguous cases, e.g . deciding when occlusion is sufficiently severe to classify as

ok rather than good, or when the objects are too small. Note, the abstract vs. non-abstract

categorisation is not general but is suitable for the object-classes we consider in this chapter.

For example, it would not be useful if the class of interest was “graph” or “statue” or a similar

more abstract category.

Table 6.1 on page 121 lists the 18 categories downloaded and the corresponding statistics

for in-class and non-class images. The overall precision of the images downloaded for all 18

classes is about 29%. Table 6.2 on page 121 details the statistics for each of the three retrieval
1http://wordnet.princeton.edu

http://wordnet.princeton.edu

6.3 Filtering Drawings & Abstract Images 120

techniques (WebSearch, ImageSearch and GoogleImages). Note that some images are common

between the methods. ImageSearch gives a very low precision (only about 4%) and is not used

for the harvesting experiments. Only WebSearch and GoogleImages are used, and their images

are merged into one dataset per object-class.

Due to the great diversity of images available on the Internet and because of how we retrieve

the images, it is difficult to make general observations on how these datasets look. However,

it is clear that polysemy affects the returned images. Interestingly, this is not a problem that

could be predicted directly from the English word, since most of the classes we search for do

not have direct polysemous meanings, i.e. they are not polysemous in the sense of “bank” (as

in place to get money, or river bank) for example. It is rather that the words correspond to

brands or product names (“leopard tank”) or team names (the NHL ice hockey team “San Jose

Sharks”) or are used as attributes (“tiger shark”). Apart from that, the in-class images occur in

almost all variations imaginable, as sharks crashed into houses or other oddities. Even though

context [Torralba (2003)] can clearly be important in re-ranking the images (e.g . camel and

kangaroo in desert-like images), it will have its limitations due to the variety of occurrences of

the object.

6.3 Filtering Drawings & Abstract Images

Since we are mostly interested in building datasets for natural image recognition, we ideally

would like to remove all abstract images from the downloaded images. However, separating

abstract images from all others automatically is very challenging for classifiers based on visual

features. Instead we tackle the easier visual task of removing drawings & symbolic images.

These include: comics, graphs, plots, maps, charts, drawings and sketches, where the images

can be fairly simply characterised by visual features (see below). Example images are shown

in Figure 6.3 on page 122. Their removal significantly reduces the number of non-class images

improving the resulting precision of the object-class datasets as shown in Table 6.1 (overall

precision increases from 29% to 35%). Filtering out such images also aims to remove this type

of abstract image from the in-class images, as the focus is to build datasets of natural images

for the specified object classes.

6.3 Filtering Drawings & Abstract Images 121

downloaded images after drawing&symbolic filtering
Class in-cl. non-cl. prec. in-cl. non-cl. prec. false pos.

airplane (ap) 904 1659 35.27% 635 1007 38.67% 91
beaver (bv) 236 3121 7.03% 160 2195 6.79% 4
bikes (bk) 1268 1931 39.64% 983 1082 47.60% 111
boat (bt) 856 2175 28.24% 726 1354 34.90% 70
camel (cm) 594 1808 24.73% 485 1274 27.57% 46
car (cr) 1128 1042 51.98% 938 568 62.28% 92

dolphin (dp) 791 1416 35.84% 533 906 37.04% 81
elephant (ep) 937 1558 37.56% 763 1007 43.11% 11
giraffe (gf) 945 1267 42.72% 802 763 51.25% 32
guitar (gr) 1219 2035 37.46% 873 832 51.20% 248
horse (hs) 1229 1720 41.68% 975 1043 48.32% 78

kangaroo (kg) 418 1763 19.17% 329 1161 22.08% 14
motorbikes (mb) 732 953 43.44% 607 582 51.05% 86
penguin (pg) 748 1400 34.82% 447 794 36.02% 33
shark (sk) 583 1710 25.43% 413 1089 27.50% 60
tiger (tr) 379 2068 15.49% 311 1274 19.62% 17

wristwatch (ww) 941 957 49.58% 710 549 56.39% 220
zebra (zb) 483 1662 22.52% 416 987 29.65% 19

total 14391 30245 32.24% 11106 18467 37.55% 1313

Table 6.1: Image class statistics of the original downloaded images using
WebSearch&GoogleImages only, and after applying the drawing&symbolic images removal fil-
ter. The last column shows the number of relevant non-drawing images that were removed
(false positives).

Service in-class non-class precision
WebSearch 8773 25252 26%

ImageSearch 5963 135432 4%
GoogleImages 4416 6766 39%

Table 6.2: Statistics by source. The statistics of downloaded images for the different
retrieval techniques. WebSearch describes the images downloaded from all web-pages that
Google returns to a query word. GoogleImages returns all images returned by Google Image
Search. ImageSearch uses the images returned by Google Image Search as “seed” images and
returns all images on the web-pages where those “seed” images originate from.

6.3.1 Learning the Filter

We train a radial basis function Support Vector Machine (SVM) on a hand labelled dataset

(examples in Figure 6.3). After the initial training no further user interaction is required. In

order to obtain this dataset, images were downloaded using ImageSearch with one level of re-

cursion (i.e. web pages linked from “seed” web pages are also used) with queries such as “sketch”

or “drawing” or “draft”. The goal was to retrieve many images and then select suitable training

images manually. The resulting dataset consists of approximately 1400 drawings&symbolic im-

6.3 Filtering Drawings & Abstract Images 122

drawing&symbolic non drawing&symbolic

Figure 6.3: Drawings&symbolic images. Examples of positive and negative training im-
ages.

ages, and 2000 non drawings&symbolic images. We used this relatively large number of images

to be sure to capture all varieties of abstract images as well as the wide range of natural images

that can be encountered.

Three simple visual only features are used: (i) a colour-histogram; (ii) a histogram of the

L2-norm of the gradient; (iii) a histogram of the angles (0 . . . π) weighted by the L2-norm of the

corresponding gradient. In all cases 1000 equally spaced bins are used. Although we did not

make a comprehensive evaluation of various methods and histogram-sizes smaller and larger

binning was tried and did not work as well. The motivation behind this choice of features is

that drawings&symbolic images are characterised by sharp edges in certain orientations and

or a distinctive colour distribution (e.g . only few colours in large areas). The method achieves

around 90% classification accuracy on the drawings&symbolic images dataset (using two-fold

cross-validation).

This classifier is applied to the entire downloaded image dataset to filter out draw-

ing&symbolic images, before further processing. The total number of images that are removed

for each class is shown in Table 6.1. In total 39% of non-class images are removed over all

classes. The remaining images are those used in our experiments. As well as successfully re-

moving non-class images, the filter also succeeds in removing an average of 54% (107) in-class

abstract images, with a range between 38% (for giraffe, 111 images) and 75% (for beaver, 72

images). There is some loss of the desired in-class non-abstract images, with on average 11%

(73 images) removed, though particular classes lose a relatively high percentage (24% for gui-

tar and wristwatch). Even though this seems to be a high loss the precision of the resulting

datasets is improved in all cases except for the class beaver.

6.4 Ranking on Textual Features 123

6.4 Ranking on Textual Features

We now describe the re-ranking of the returned images based on text and meta-data alone.

Here we follow and extend the method proposed by Frankel et al. (1997) in using a set of

textual attributes whose presence is a strong indication of the image content.

Textual features. We use seven features from the text and HTML-tags on the web-page:

contextR, context10, filedir, filename, imagealt, imagetitle, websitetitle, as introduced in Sec-

tion 6.2.1. The features are intended to be conditionally independent, given the image content

(we address this independence below). It is difficult to compare directly with the features in

Frankel et al. (1997), since no precise definition of the features actually used is given.

Context here is defined by the HTML source, not by the rendered page since the latter

depends on screen resolution and browser type and is expensive to compute. In the text

processing a standard stop list [Onix] and the Porter stemmer [Porter et al. (2002)] are used.

Stemming is a technique that reduces words to a “stem” which is independent of plural, singular

and other inflections. Stopping describes the method where common words as “a”, “I”, “and” and

the like are discarded, under the assumption that they do not contribute to the semantics of

the text. In addition HTML-tags and domain specific stop words (such as “html” or “ ”)

are ignored.

We also experimented with a number of other features, such as the image MIME type (gif,

jpeg, etc.), but found that they did not help discrimination. Table 6.3 gives an idea of the

occurrence of the query word in any of the text features. It can be seen that the occurrence

of the query word in the filename- or imagetitle-tag is a strong indicator for the image being

in-class.

6.4.1 Image Ranking

Using these seven textual features, the goal is to re-rank the retrieved images. Each feature is

treated as binary: “True” if it contains the query word (e.g . penguin) and “False” otherwise.

Thus, the seven features define a binary feature vector for each image a = (a1, . . . , a7). We

learn a class independent ranker in order to re-rank the images based on those seven features;

i.e. the ranker is not learnt or tuned for each class separately, but is learnt once and can then

6.4 Ranking on Textual Features 124

airplane beaver bikes
in-cl. non-cl. prec. in-cl. non-cl. prec. in-cl. non-cl. prec.

contextR 263 407 39.25% 107 1312 7.54% 717 717 50.00%
context10 264 349 43.07% 97 1025 8.65% 580 523 52.58%
filedir 85 104 44.97% 29 1093 2.58% 440 496 47.01%

filename 186 289 39.16% 128 420 23.36% 249 153 61.94%
imagealt 130 148 46.76% 76 246 23.60% 139 92 60.17%
imagetitle 17 26 39.53% 9 19 32.14% 20 18 52.63%
websitetitle 0 0 NaN% 63 372 14.48% 0 0 NaN%

boat camel car
in-cl. non-cl. prec. in-cl. non-cl. prec. in-cl. non-cl. prec.

contextR 458 819 35.87% 326 786 29.32% 679 401 62.87%
context10 354 593 37.38% 296 547 35.11% 452 268 62.78%
filedir 315 480 39.62% 77 208 27.02% 408 247 62.29%

filename 279 293 48.78% 320 442 41.99% 187 121 60.71%
imagealt 123 151 44.89% 162 209 43.67% 107 62 63.31%
imagetitle 3 8 27.27% 11 12 47.83% 11 4 73.33%
websitetitle 154 188 45.03% 117 246 32.23% 0 0 NaN%

dolphin elephant giraffe
in-cl. non-cl. prec. in-cl. non-cl. prec. in-cl. non-cl. prec.

contextR 449 656 40.63% 503 604 45.44% 467 412 53.13%
context10 367 517 41.52% 464 457 50.38% 455 337 57.45%
filedir 276 496 35.75% 161 309 34.26% 119 110 51.97%

filename 259 152 63.02% 464 290 61.54% 576 193 74.90%
imagealt 166 117 58.66% 237 191 55.37% 292 131 69.03%
imagetitle 8 7 53.33% 24 15 61.54% 25 15 62.50%
websitetitle 120 190 38.71% 242 228 51.49% 248 181 57.81%

guitar horse kangaroo
in-cl. non-cl. prec. in-cl. non-cl. prec. in-cl. non-cl. prec.

contextR 625 533 53.97% 660 735 47.31% 173 650 21.02%
context10 502 368 57.70% 506 553 47.78% 175 565 23.65%
filedir 406 384 51.39% 444 409 52.05% 53 265 16.67%

filename 280 133 67.80% 339 253 57.26% 199 326 37.90%
imagealt 140 98 58.82% 150 111 57.47% 117 269 30.31%
imagetitle 13 5 72.22% 10 11 47.62% 24 16 60.00%
websitetitle 0 0 NaN% 203 199 50.50% 104 279 27.15%

motorbikes penguin shark
in-cl. non-cl. prec. in-cl. non-cl. prec. in-cl. non-cl. prec.

contextR 231 246 48.43% 269 424 38.82% 259 656 28.31%
context10 242 203 54.38% 233 300 43.71% 228 530 30.08%
filedir 57 28 67.06% 85 267 24.15% 144 327 30.57%

filename 248 96 72.09% 277 191 59.19% 250 380 39.68%
imagealt 137 92 59.83% 163 103 61.28% 145 204 41.55%
imagetitle 16 10 61.54% 13 2 86.67% 11 21 34.38%
websitetitle 0 0 NaN% 123 144 46.07% 129 274 32.01%

tiger wristwatch zebra
in-cl. non-cl. prec. in-cl. non-cl. prec. in-cl. non-cl. prec.

contextR 188 684 21.56% 263 133 66.41% 264 602 30.48%
context10 166 518 24.27% 241 85 73.93% 275 453 37.77%
filedir 65 292 18.21% 24 8 75.00% 67 280 19.31%

filename 215 378 36.26% 57 14 80.28% 324 387 45.57%
imagealt 97 172 36.06% 97 18 84.35% 154 218 41.40%
imagetitle 4 10 28.57% 11 5 68.75% 13 12 52.00%
websitetitle 61 242 20.13% 0 0 NaN% 138 245 36.03%

Table 6.3: Relation of image quality and the occurrence of the query word in textual
attributes for the filtered images. Shown are the numbers for non-junk images and junk images
(stemming was used). The recall is given in parentheses in percent and the precision (prec.) is
given in percent as well.

6.4 Ranking on Textual Features 125

be applied to any new class. The posterior probability, P (y = in-class|a), of the image being

in-class, where y ∈ { in-class, non-class} is the class-label of an image, is estimated using

five different Bayesian models and logistic regression. The images are ranked based on their

posterior probability of being in-class.

The following presents the details of those five different Bayesian models for P (y =

in-class|a). All these models are trained by estimating the corresponding likelihoods,

e.g . P (a3|y), as well as the prior P (y) empirically, i.e. counting the corresponding occurrences

in the training data and using a Dirichlet prior/Laplace smoothing. During testing, these

estimates are used in the form of a look-up table to retrieve the final posterior estimate P (y|a).

For simplicity Z denotes the partition function to normalise the following posteriors to

proper probability distributions:

Chow-Liu dependence tree decomposition [Chow and Liu (1968)].

P (y|a) =
8∏
1

P (xi|xm(j))/Z (6.1)

with x = (a1, . . . , a7, y) and m being a permutation of (1, . . . , 8). The Chow-Liu model approx-

imates the full joint dependency graph as a tree by retaining the edges between variables with

the highest mutual information.

Naïve Bayes model.

P (y|a) =
7∏
1

P (ai|y) · P (y)/Z (6.2)

Given the class-label for an image the text features are assumed to be independent. For our

application this is not the case, e.g . filename and image alternative tag are highly correlated.

Pairwise dependencies.

P (y|a) =
7∏

i,j=1

P (ai, aj|y) · P (y)/Z (6.3)

Only pairwise dependencies are modelled. This is similar to the Chow-Liu model, but less

sparse.

6.4 Ranking on Textual Features 126

Full joint.

P (y|a) = P (a1, · · · , a7|y) · P (y)/Z (6.4)

The full joint probability distribution is learnt. If the amount of available training data is too

small the learnt model can be inaccurate.

Mixed naïve Bayes.

P (y|a) = P (a1, . . . , a4|y)
7∏
5

P (ai|y) · P (y)/Z (6.5)

where P (a1, . . . , a4|y) is the joint probability of the first four textual features (contextR, con-

text10, filedir, filename). This choice resulted from a comparison of several different factori-

sations of the likelihood. We looked at the correlation of the attributes and evaluated the

performance of different factorisations on a validation set. However, as the experiments in

the next section show, the performance variations between these different factorisations do not

differ much.

Logistic regression. We also evaluate the performance of logistic regression to directly model

P (y= in-class|a). Thus,

P (y|a) =
1

1 + e−wT a

is estimated and used directly.

6.4.2 Text Ranking Results

Images are ranked using the text based posterior P (y|a) to provide an ordering. We assess the

performance by reporting precision at various points of recall as well as average precision (see

Section 3.3.4). To re-rank images for one particular class (e.g . penguin) we do not employ the

groundtruth data for that class. Instead, we train the Bayes classifier or the logistic regression

model using all available annotations, except the class we want to re-rank. This way we evaluate

performance as a completely automatic class independent image ranker; i.e. for any new and

unknown class, the images can be re-ranked without ever using labelled groundtruth knowledge

of that class.

6.4 Ranking on Textual Features 127

prec. ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg.

Mixed Naïve Bayes

15% 40.6 30.0 70.4 52.2 49.7 61.2 70.3 70.7 82.4 63.2 57.7 53.9 67.9 68.4 54.1 43.8 78.0 48.4 59.1

100 39.0 31.0 76.0 52.0 47.0 66.0 69.0 77.0 87.0 58.0 58.0 53.0 67.0 69.0 55.0 43.0 79.0 50.0 59.8

avg. 41.7 31.2 58.7 49.0 48.2 66.5 59.2 64.6 76.1 65.7 57.2 41.0 66.6 61.5 42.6 37.6 70.6 53.0 55.9

Pairs

15% 41.5 34.3 67.5 54.6 50.0 61.4 68.4 64.9 83.0 62.0 57.7 57.1 66.4 69.2 43.2 43.4 81.1 53.0 58.8

100 43.0 36.0 66.0 51.0 53.0 61.0 69.0 62.0 79.0 59.0 61.0 53.0 66.0 69.0 38.0 41.0 81.0 49.0 57.6

avg. 46.6 33.5 60.5 45.2 45.6 65.2 59.8 62.3 74.4 65.2 55.2 43.4 65.6 62.7 39.3 38.3 71.7 53.5 54.9

Chow-Liu tree

15% 38.1 19.4 62.5 53.3 48.0 61.2 61.4 64.9 72.2 68.7 55.9 32.9 69.5 57.5 41.1 38.3 66.0 40.7 52.9

100 43.0 19.0 69.0 55.0 50.0 59.0 63.0 65.0 68.0 70.0 58.0 33.0 72.0 56.0 41.0 34.0 80.0 33.0 53.8

avg. 41.1 21.1 56.5 45.3 45.5 66.6 57.2 58.4 73.5 61.4 55.3 38.7 66.2 55.5 42.6 36.0 63.4 45.6 51.6

Naïve Bayes

15% 41.9 38.7 67.5 54.4 50.0 61.7 70.3 64.91 81.3 62.0 57.5 57.1 66.4 70.7 43.2 41.1 81.1 58.7 59.3

100 43.0 36.0 66.0 51.0 54.0 61.0 68.0 62.0 79.0 59.0 61.0 53.0 66.0 69.0 37.0 40.0 81.0 58.0 58.0

avg. 46.7 34.2 60.6 45.2 45.5 65.1 59.9 62.3 74.4 65.5 55.2 43.5 65.6 62.9 39.8 38.4 71.7 52.1 54.9

Full joint

15% 41.3 32.0 69.8 53.5 47.0 59.8 71.6 72.6 85.4 62.0 58.9 39.7 65.4 67.7 45.5 41.1 79.8 56.0 58.3

100 37.0 32.0 77.0 56.0 45.0 62.0 71.0 74.0 84.0 57.0 55.0 42.0 63.0 66.00 45.0 41.0 82.0 55.0 58.0

avg. 42.2 32.2 60.6 49.3 49.1 66.6 62.6 63.2 75.9 65.8 57.6 37.6 65.6 62.1 44.9 38.6 71.3 54.1 55.5

Logistic Regression

15% 41.2 30.4 68.4 53.3 55.9 61.4 66.7 62.7 78.5 62.0 59.7 57.8 65.9 66.3 41.7 45.1 81.8 51.3 58.3

100 43.0 33.0 68.0 56.0 54.0 63.0 68.0 61.0 79.0 60.0 57.0 54.0 64.0 67.0 41.0 44.0 83.0 47.0 57.9

avg. 46.2 32.4 60.6 48.3 49.5 64.7 60.5 61.9 75.0 66.0 54.5 43.4 66.0 61.1 39.3 40.6 72.0 53.8 55.3

Table 6.4: Precision of textual re-ranking. The performance of the textual re-ranking for
all 18 classes over different models: precision at 15% recall, precision at 100 images recall, and
average precision. The precision is given as a percentage. The last column gives the average over
all classes. Mixed naïve Bayes performs best and was picked for all subsequent experiments.

In the evaluation there are two possibilities for how to treat the abstract images: (i) abstract

images are considered to be in-class, or (ii) all abstract images are treated as non-class. The

case with abstract images treated as non-class (6a) leads to poorer performance of the text

ranker. This is expected behaviour as it can be imagined that many images might textually be

related to the object-class, but of type abstract ; all those images are considered non-class and

therefore reduce the precision for a specific recall. We do not report the detailed results here

as we choose option (i) for most experiments, i.e. abstract images are considered to be in-class.

Figure 6.4 gives an overview of the different methods and their performance. The mixed

model (6.5) gave slightly better performance than other factorisations (for the top 100 images),

and reflects the fact that the first four features are less independent from each other than

the remaining three. It is used to train the visual classifier in the next section. Logistic

6.4 Ranking on Textual Features 128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

18T−Pa−yNaive−noimgSrch
18T−Pa−yNonNaive−noimgSrch
18T−Pairs−noimgSrch
18T−4Joint−noimgSrch
18T−Pa−yChowLui−noimgSrch
18T−Py−aLogReg−noimgSrch
no−ranking

0

10

20

30

40

50

60

70

80

90

100

ai
rp

la
ne

be
av

er

bi
ke

s

bo
at

ca
m

el ca
r

do
lp

hi
n

el
ep

ha
nt

gi
ra

ffe

gu
ita

r

ho
rs

e

ka
ng

ar
oo m

ot
or

bi
ke

s

pe
ng

ui
n

sh
ar

k

tig
er

w
ris

tw
at

ch

ze
br

a

av
er

ag
e

4 Joint Pairs Chow−Liu Naive Full Log.−Regression

Figure 6.4: Comparison of text rankers. The average precision-recall of text rankers
is shown on the left. The precision-recall curve averaged over all 18 classes for each of the
described ranking methods. The performance at 15% recall for all 18 classes and the four
different models (see bar chart on the right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

giraffe
wristwatch
bikes
motorbikes
guitar
car
elephant
penguin
dolphin
boat
kangaroo
horse
shark
zebra
camel
tiger
airplane
beaver
avg. rank

Figure 6.5: Text based re-ranking. precision of recall estimated for each class with ab-
stract images considered in-class using the mixed naïve Bayes model. The labels are shown
in decreasing order of precision at 15% recall. The recall precision curves are only shown for
selected classes for clarity. The average over all 18 classes is also shown.

regression performed similar to the Bayes models. Only the Chow-Liu decomposition performs

significantly worse. Figure 6.5 shows the precision-recall curves for selected classes using the

mixed naïve model. It can clearly be seen that precision is highly increased at the lower recall

levels, compared to the average precision of Table 6.1 on page 121.

6.4 Ranking on Textual Features 129

A separate set of experiments was carried out to measure how the performance of the text

ranker varies with the number and choice of classes used for training. Given our goal of ranking

images we compare the different models by assessing precision at 15% recall. We find that

the performance is almost unaltered by the choice of training classes, provided more than five

classes (chosen randomly) are used for training.

Discussion As can be seen from Figure 6.5 our text re-ranker performs well on average, and

significantly improves the precision up to quite a high recall level (see Figure 6.8 on page 137

to 6.11 for top ranked images). In Section 6.5 we will show that this is sufficient to train a

visual classifier. For some classes the text ranker performs very well (e.g . wristwatch, giraffe)

for others it performs rather poorly (e.g . airplane, beaver, camel, tiger). Visual inspection of

the highly ranked “outlier” (non-class) images in the text ranked lists gives some explanation for

these performances. Classes that perform well (wristwatch, giraffe) generally have outliers that

are unrelated to each other. In contrast for the classes that perform poorly the outlier images

are related and result from lack of discrimination of the query word – for example for airplanes

there are images of airplane food, airports, toy airplanes, paper airplanes, airplane interiors, and

advertisements with comic airplanes. Other classes suffer from the type of polysemy described

in Section 6.2: for camels there are brand and cigarette related outliers; and for tiger there is

the attribute problem with images of helicopters, tanks, fish (sharks), boxing, golf, stones, and

butterflies. Beaver suffers from both problems – lack of discrimination and polysemy – there

are many nature related outliers that do not contain beavers, and some brand related outliers.

Despite these problems we are able to train a good visual classifier for most classes in the next

section.

We investigated two alternative text-based classifiers, pLSA and SVM, in addition to logistic

regression and the Bayes estimator finally adopted, but found they had inferior performance.

For the SVM the same binary text features a were used. It is possible that the binary features

lead to the poor performance of the SVM. For the pLSA we used context10 and contextR

(similar to Berg and Forsyth (2006)). Due to problems in the pLSA clustering, the problem of

how to select the right topic without user interaction as in Berg and Forsyth (2006), and the

question of how to use the additional binary features (e.g . filename) in a principled manner,

we adopted the Bayes estimator instead. For a more detailed discussion on the pLSA ranking

6.5 Ranking on Visual Features 130

also see Section 6.7.2. It is interesting to see that logistic regression, being conceptually very

different, performs very similar to most of the Bayes factorisations. This might lead to the

conclusion that some sort of saturation point is reached and that those seven binary features

do not allow for more discrimination.

6.5 Ranking on Visual Features

The text re-ranking associates a posterior probability with each image as to whether it contains

the query class or not. The problem we are now faced with is how to use this information to

train a visual classifier which would improve the ranking further. The problem is one of training

from noisy data: we need to decide which images to use as positive and negative training data

and how to select a validation set in order to optimise the parameters of the classifier. We first

describe the visual features used, and then how the classifier is trained.

6.5.1 Visual Features

The basics for modelling object-classes using visual features and feature descriptors were in-

troduced in Section 2.1. We follow the approach of Fergus et al. (2005a) and use a variety of

region detectors with a common visual vocabulary in the bag of visual-words model framework

(BOW), as introduced in Section 2.1.2. All images are first re-sized to 300 pixels in width. Re-

gions are detected using: difference of Gaussians, Multiscale-Harris [Mikolajczyk et al. (2004)],

Kadir’s saliency operator [Kadir et al. (2004)], and points sampled from Canny edge points.

Each image region is represented as a 72 dimensional SIFT descriptor [Lowe (1999)]. A separate

vocabulary consisting of 100 visual-words is learnt for each detector using k-means, and these

vocabularies are then combined into a single vocabulary of 400 words. Finally, the descriptor

of each region is assigned to the vocabulary.

In addition to the SIFT descriptor used in Fergus et al. (2005a) we add the widely used

HOG descriptor [Dalal and Triggs (2005)]. It is computed over the whole image to incorporate

some spatial layout into the model. Fritz and Schiele (2008) used it in a setting similar to ours.

We use a cellsize of 8 pixels, a blocksize of one cell, and 9 contrast invariant gradient bins. This

results in a 900 dimensional feature vector, as the images where re-sized to 80× 80 pixels. The

two descriptors are concatenated resulting in a 1300 dimensional feature vector per image.

6.5 Ranking on Visual Features 131

6.5.2 Training the Visual Classifier

Due to the amount of noise in the training data we chose to use a SVM classifier, since it has

the potential to train despite noise in the data. The following presents our setup in detail.

At this point we can select n+ positive training images from the top of the text ranked list,

or those that have a posterior probability above some threshold. A subset of these positive

images will be “noisy”, i.e. will not be in-class. Figure 6.4 on page 128 gives an idea of the

noise stemming from the proportion of outliers. It averages at 40%, if n+ = 100 (see Table 6.4

on page 127). However, we can assume that the non-class images in this positive set are not

visually consistent – an assumption verified to some extent by the results in Section 6.6. The

case of negative images is more favourable: we select n− images at random from all downloaded

images (i.e. from all 18 classes, tens of thousands of images) and the chances of any image

being of a particular class is very low. We did not choose to select the n− images from the

low ranked images of the text ranker output, because the probability of finding in-class images

there is higher than finding them in the set of all downloaded images. Note, we do not use the

groundtruth at any stage of this training.

To implement the SVM we use the publicly available SVMlight software by Joachims, with

the option to remove inconsistent training data enabled. See Section 2.2.1 for the details of the

parameters that occur in the version we use. Given two input images Ii and Ij and their corre-

sponding normalised histograms of visual-words x and x′ this implementation uses the following

χ2 radial basis function (RBF) kernel [Zhang et al. (2007)]: k(x,x′) = exp(−γ ·χ2(x,x′)), with

γ being the free kernel parameter. Thus, γ, C+ and C− are the three parameters that can be

varied. Sometimes C+ and C− are used to correct unbalanced training data [Morik et al. (1999)].

In our case, however, the SVM is very sensitive to these parameters, probably due to the huge

amount of noise in the data, and the optimal value does not directly correspond to the ratio of

positive to negative images. Therefore, we obtain the optimal values for these parameters by

means of ten-fold cross validation.

Cross validation. We require a performance measure for the cross-validation and use pre-

cision at 15% recall. A grid search over the aforementioned three parameters is performed,

training the SVM with each of the 560 parameter settings on 9/10th of the total training data

6.6 Results for Textual/Visual Image Ranking 132

(n+ + n−). The testing is then performed on the remaining 1/10th of the data and the quality

of each parameter setting is rated based on the 15% recall on this test-set. This cross validation

is carried out for each of the 10 non-overlapping chunks.

6.6 Results for Textual/Visual Image Ranking

In this section we evaluate different combinations of training and testing. Figure 6.8 to Fig-

ure 6.11 on page 140 compare text and vision and also show example high ranked images

using our text+vision algorithm with BOW+HOG. First we investigate the influence of the

parameter choices for fore- and background images. Then the influence of the training data

noise is evaluated by running the algorithm on the manually labelled groundtruth data. We

also compare to a “baseline” where images are sampled randomly, i.e. no text ranking is used.

Last, we take a look at the influence of the filter step from Section 6.3 and a variation on the

cross-validation step. We report the precision at 15% recall ± one standard deviation over five

runs of cross-validation for those experiments in Table 6.5.

Influence of n+ and n-. We first investigate how the classification performance is affected by

the choice of n+ and n−. Results are given in Table 6.5 for various choices of these parameters.

The clear improvement brought by the visual classifier over the text based ranking for most

classes is obvious. It can be seen that increasing n- tends to improve performance. It is,

however, difficult to select optimal values for n+ and n- since these numbers are very class

dependent. Table 6.5 indicates that using more images in the background class n− tends to

improve performance but there is no real difference between using 150/1000 and 250/1000,

which perform at 68.4% ± 1.9 and 68.0% ± 2.0 and are thus not significantly different. For

each choice, five different random selections are made for the sets used in the ten-fold cross-

validation, and mean and standard deviation are reported. It can be seen that HOG alone

performs significantly worse than the bag of visual-words 57.9%± 1.8, but the combination of

BOW and HOG improves the overall performance to 69.8%±2.1, also compared to BOW alone

68.0%± 2.0.

6.6 Results for Textual/Visual Image Ranking 133

prec. 15% ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg. std

text 40.6 30.0 70.4 52.2 49.7 61.2 70.3 70.7 82.4 63.2 57.7 53.9 67.9 68.4 54.1 43.8 78.0 48.4 59.1

t+v (250/250) 54.0 36.4 64.8 60.9 53.5 78.5 61.9 77.5 86.5 65.4 60.6 53.5 78.2 55.5 56.8 45.7 81.6 96.8 64.9 9.3 (2.5)

t+v (150/500) 59. 33. 69.7 63. 56.8 91.8 61.6 70.7 83.2 67.3 67. 50.0 77.4 70.4 69.3 59.6 86.3 85.5 67.9 8.3 (2.0)

t+v (250/500) 58.6 35.0 64.6 65.1 47.8 79.0 60.1 75.4 86.9 51.7 68.4 50.2 77.7 69.7 64.3 39.8 90.4 87.9 65.2 8.8 (2.0)

t+v (250/1000) 63.5 32.3 65.9 62.4 51.6 93.0 61.7 80.2 87.8 62.6 71.2 45.5 84.6 69.6 64.9 53.0 86.6 95.8 68.4 7.9 (1.9)

t+v (150/1000) 52.3 39.3 68.6 66.2 57.3 87.9 66.5 78.7 83.8 63.0 57.3 48.6 64.0 72.5 82.9 62.6 93.2 79.8 68.0 7.2 (2.0)

t+v (150/1000) C 49.8 42.7 71.0 66.2 55.1 88.8 64.7 78.0 85.7 62.3 49.2 56.2 67.0 72.6 69.8 58.5 88.9 86.1 67.4 8.3 (2.1)

HOG t+v 45.1 21.1 53.2 62.0 49.1 80.4 51.6 71.6 78.7 62.9 64.1 43.0 68.2 77.8 47.7 29.8 87.6 48.0 57.9 6.6 (1.8)

HOG+BOW t+v 42.8 46.4 70.4 60.9 54.5 93.5 67.7 84.8 88.3 62.5 68.8 55.2 72.1 78.9 80.7 57.3 89.7 81.4 69.8 8.1 (2.1)

HOG+BOW t+v C 51.3 42.3 68.2 60.3 63.2 91.1 69.7 78.7 88.7 66.3 70.1 53.9 76.6 90.2 66.1 50.2 92.5 91.7 70.6 7.2 (1.7)

gt (150/1000) 83.1 90.8 75.8 76.1 78.0 98.6 78.2 96.0 91.4 88.8 90.2 69.0 95.5 82.7 91.8 94.3 96.1 93.3 87.2 8.4 (2.0)

(B) (150/1000) 52.4 12.9 55.4 63.6 54.1 94.9 42.6 47.9 83.7 61.4 52.8 29.8 65.2 53.7 42.9 28.5 82.7 78.3 55.7 6.7 (1.7)

Table 6.5: Comparison of precision at 15% recall. ‘text’ refers to text re-ranking alone;
‘t+v’ is text+vision re-ranking using different training ratios n+/n−; ‘gt’ is groundtruth (only
positive images) training of the visual classifier; and (B) is the baseline, where the visual
classifier is trained on n+ = 150 images uniformly sampled from the filtered images of one
class, instead of the text re-ranked images, and n− = 1000 background images. The second
last column (avg.) gives the average over all classes. The last column states the mean of the
classwise standard deviations over five runs of cross-validation, as well as the standard deviation
of the means over all classes, in parentheses.

Influence of training data noise. We next determine how much the performance is affected

by the noise in the training data by training the SVM on groundtruth positive data, i.e. instead

of selecting n+ images from the text ranked images (HOG+BOW), we select n+ in-class images

using the groundtruth labelling (gt). We find that the text+vision system performs well for the

classes where the text ranking performs sufficiently well (see Table 6.5). HOG+BOW vs. gt:

e.g . car 93.5%±7.1 vs. 98.6%±1.1, or giraffe 88.3%±2.7 vs. 91.4%±4.8. If the text ranking fails

the groundtruth performs, as to be expected, much better than the text ranked based training,

e.g . for airplane, camel, kangaroo. These experiments show that the SVM based classifier is

relatively insensitive to noise in the training data, as long as there is a critical mass of in-class

positive images within the top n+ text ranked images

Baseline comparison. As a baseline comparison, we investigate performance if no text re-

ranking is used, but the n+ images are sampled uniformly from the filtered images. If the text

re-ranking works well, and hence provides good training data, then text+vision improves over

the baseline, e.g . elephant 84.8%± 3.3 vs. 47.9%± 4.0, penguin 78.9%± 13.2 vs. 53.7%± 3.4,

or shark 80.7%±4.2 vs. 42.9%±14.4 (see Table 6.5 (B) for all classes). In cases where the text

6.6 Results for Textual/Visual Image Ranking 134

prec. 15& ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg. std.

tf rf 42.8 46.4 70.4 60.9 54.5 93.5 67.7 84.8 88.3 62.5 68.8 55.2 72.1 78.9 80.7 57.3 89.7 81.4 69.8 8.1 (2.1)

tf ru 38.7 39.0 68.7 62.3 55.5 93.4 63.6 81.8 84.4 64.3 68.9 53.0 74.7 80.0 79.1 58.2 92.5 80.2 68.8 6.6 (1.8)

tu ru 49.9 32.1 61.4 64.1 55.1 82.0 63.9 62.2 90.1 46.6 41.6 49.3 78.8 80.6 62.0 34.7 91.4 78.2 62.4 9.2 (2.5)

Table 6.6: Comparing filtered vs. non-filtered images and baseline. t{f |u} denotes
training on filtered (unfiltered) images; r{f |u} ranking on filtered (unfiltered) images; The first
row gives the results for the whole system (HOG+BOW (t+v) in Table 6.5). The second row
shows the case where all images were re-ranked, including the ones that were filtered out in
Section 6.3. The third row shows training and ranking on unfiltered images. The last column
states the mean of the classwise standard deviations over five runs of cross-validation, as well
as the standard deviation of the means over all classes, in parentheses.

ranking does not perform well the baseline can even outperform text+vision. This is due to the

fact, that bad text ranking can provide visually consistent training data, that does not show

the expected class (e.g . for airplanes it contains many images showing: airplane food, inside

airplanes/airports, taken out of the window of an airplane). However, the uniformly sampled

images still consist of about 35% in-class images (Table 6.1 on page 121) and the n− are very

unlikely to contain in-class images.

Influence of the filter step. In addition to re-ranking the filtered images we applied the

text+vision system to all images downloaded for one specific class, i.e. the drawings&symbolic

images were included. It is interesting to note that the performance is comparable to the case of

filtered images (Table 6.6). This means that the learnt visual model is strong enough, to remove

the drawings&symbolic images during the ranking process. Thus, the filtering is only necessary

to train the visual classifier and is not required to rank new images as evident from row two

and three in Table 6.6 where the performance for training on filtered (tf) images is compared

to training on unfiltered images (tu); both cases use unfiltered images for the ranking (ru).

Training on filtered images and ranking on unfiltered images (tf ru) performs almost as good

as both training and ranking on filtered images (tf rf), 68.8%± 1.8 vs. 69.8%± 2.1, i.e. using

unfiltered images during testing does not affect the performance significantly. However, using

unfiltered images during training and ranking (tu ru), decreases the performance significantly

down to 62.4%± 2.5.

Cross validation. In order to select the appropriate parameter settings we use cross-

validation as described in Section 6.5.2. Figure 6.6 and Figure 6.7 show how different parameter

6.6 Results for Textual/Visual Image Ranking 135

overfitted to training data

0 200 400 600 800 1000

−2

−1

0

1

images

S
V

M
 r

es
po

ns
e

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

recall

pr
ec

is
io

n

training training

0 20 40 60 80 100

−2

−1

0

1

images

S
V

M
 r

es
po

ns
e

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

recall

pr
ec

is
io

n

validation validation

most images classified as background

0 200 400 600 800 1000

−2

−1

0

1

images

S
V

M
 r

es
po

ns
e

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

recall

pr
ec

is
io

n

training training

0 20 40 60 80 100

−2

−1

0

1

images

S
V

M
 r

es
po

ns
e

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

recall

pr
ec

is
io

n

validation validation

Figure 6.6: Parameter selection examples I. The left column in each box contains the
SVM responses for the images and the right column the precision recall curve. The top row
in each box shows the values for the training data and the bottom row for the validation
data. The images are sorted by SVM response and their label, i.e. positive images first (black),
then negative images (red). The first parameter setting (shown in the left box) overfits to the
training data and does not perform well on the validation set. The second setting classifies
most images as background and consequently does not perform well either. These examples
are for penguin.

parameter setting selected by our system

0 200 400 600 800 1000

−2

−1

0

1

images

S
V

M
 r

es
po

ns
e

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

recall

pr
ec

is
io

n

training training

0 20 40 60 80 100

−2

−1

0

1

images

S
V

M
 r

es
po

ns
e

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

recall

pr
ec

is
io

n

validation validation

best parameter setting on test-data

0 200 400 600 800 1000

−2

−1

0

1

images

S
V

M
 r

es
po

ns
e

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

recall
pr

ec
is

io
n

training training

0 20 40 60 80 100

−2

−1

0

1

images

S
V

M
 r

es
po

ns
e

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

recall

pr
ec

is
io

n

validation validation

Figure 6.7: Parameter selection examples II. See caption of Figure 6.6. The first param-
eter setting is the one that was selected by our cross-validation method. It performs reasonably
well on both the training and validation-data (test-data: 65.6%). The second setting is the one
that actually performs best on the test data (94.0%). Note that the choice is made at 15%
recall. Again these examples are for penguin.

settings for the SVM, result in different distributions of SVM response values for the images.

Figure 6.6 shows two examples that fail: one parameter setting overfits to the training data.

However, this problem is detected on the validation set since all images are classified as nega-

tive, and correspondingly the performance (precision at 15%) is bad (as shown by the precision

recall plot). In the second example all images are classified as non-class/negative, training as

well as validation images. This leads to bad, but detectable, performance as well. Figure 6.7

shows two parameter settings which result in good ranking. It can be seen that the precision

6.6 Results for Textual/Visual Image Ranking 136

recall curves for both the training and validation set look similarly good. As we use precision

at 15% as selection criteria it may happen that the seemingly better model is not selected.

We also investigated a slight adjustment to this method, that ignores “difficult” images.

Parameter settings that classify (almost) all images as fore- or background are not useful,

neither are those that overfit to the training data. We reject those parameter settings. We then

use the “good” parameter settings to train and classify all images. By looking at the distribution

of SVM responses (over all parameter settings) we are able to eliminate “intermediate” images,

i.e. images that are not classified as positive or negative images in the majority of cases.

We assume that those images are difficult to classify and we do not use those in our model

selection step, because we cannot rely on their class-labels being correct due to the noise. This

method does not give a significant improvement over all classes, but improves the performance

dramatically for some classes, e.g . penguin 90.2%±5.0 from 78.9%±13.2. This modified version

of the cross validation is denoted "C" in Table 6.5 on page 133.

6.6.1 Discussion

Training and evaluating the system with the goal to build natural image datasets, i.e. treat-

ing abstract images as non-class (6a) in all stages of the algorithm, as opposed to treating

abstract images as in-class, gives similar performance, however slightly worse. The slight drop

in performance can be explained by the fact that the text ranker inevitably returns abstract

images which are then used as training images. That our method is applicable to both those

cases is further supported by the results we retrieve on the Berg and Forsyth (2006) dataset in

Section 6.7.1.

We also investigated alternative visual classifiers, topic models (see Section 6.7.2), and

feature selection. For feature selection our intention was to find discriminative visual-words and

then use these in a Bayesian framework. The discriminative visual-words were obtained based

on the likelihood ratio of a visual-word occurring in the foreground to background images [Dorkó

and Schmid (2003)]. However, probably due to the large variation in both the foreground and

background images, together with the noisy training data, we were not able to match the

performance of the SVM ranker.

6.6 Results for Textual/Visual Image Ranking 137

airplane: text ranker

airplane: HOG+BOW t+v

beaver: text ranker

beaver: HOG+BOW t+v

bikes: text ranker

bikes: HOG+BOW t+v

boat: text ranker

boat: HOG+BOW t+v

camel: text ranker

camel: HOG+BOW t+v

Figure 6.8: Comparing top ranked 34 images using the text ranker, and the full system.
Red boxes indicate false positives.

6.6 Results for Textual/Visual Image Ranking 138

car: text ranker

car: HOG+BOW t+v

dolphin: text ranker

dolphin: HOG+BOW t+v

elephant: text ranker

elephant: HOG+BOW t+v

giraffe: text ranker

giraffe: HOG+BOW t+v

guitar: text ranker

guitar: HOG+BOW t+v

Figure 6.9: Comparing top ranked 34 images using the text ranker, and the full system.
Red boxes indicate false positives.

6.6 Results for Textual/Visual Image Ranking 139

horse: text ranker

horse: HOG+BOW t+v

kangaroo: text ranker

kangaroo: HOG+BOW t+v

motorbikes: text ranker

motorbikes: HOG+BOW t+v

penguin: text ranker

penguin: HOG+BOW t+v

shark: text ranker

shark: HOG+BOW t+v

Figure 6.10: Comparing top ranked 34 images using the text ranker, and the full system.
Red boxes indicate false positives.

6.6 Results for Textual/Visual Image Ranking 140

tiger: text ranker

tiger: HOG+BOW t+v

wristwatch: text ranker

wristwatch: HOG+BOW t+v

zebra: text ranker

zebra: HOG+BOW t+v

Figure 6.11: Comparing top ranked 34 images using the text ranker, and the full system.
Red boxes indicate false positives.

We found that combining the vision and text ranked lists using Borda count2 [Aslam and

Montague (2001)] or similar methods gave a slight improvement on average, but results were

very class dependent.

Polysemy and diffuseness, problems with no standard automatic solutions, do affect our

results. However, this chapter improves our understanding of the polysemy problem in its

different forms. The recent work of Saenko and Darrell (2008) provides very interesting methods

for first automatic solutions to the polysemy problem by using dictionary entries and images

from web-pages to learn different word senses.
2Borda count combines two ranked lists of images by adding the ranks of images that are common to both

lists. This assigns a single number to each image and hence defines a new ranking.

6.7 Comparison with Other Work & Methods 141

0

20

40

60

80

100

ai
rp

la
ne

be
av

er

bi
ke

s

bo
at ca

m
el

ca
r

do
lp

hi
n

el
ep

ha
nt

gi
ra

ffe

gu
ita

r

ho
rs

e

ka
ng

ar
oo

m
ot

or
bi

ke
s

pe
ng

ui
n

sh
ar

k

tig
er

w
at

ch

ze
br

a

Google image search ours (BOW) ours (HOG+BOW)

Figure 6.12: Comparison with Google Image Search. Precision at 100 images recall.
Compare to highlighted versions in first column of Table 6.5 on page 133 for our algorithm.

6.7 Comparison with Other Work & Methods

This section compares our algorithm to the work of Fergus et al. (2005a) and Berg and

Forsyth (2006) using their respective datasets. We also give a detailed evaluation of a non-

discriminative visual “classifier” and compare the performance of pLSA, LDA, and HDP in

Section 6.7.2.

6.7.1 Comparing with Other Work

We compare our algorithm to three other approaches and report the results for n+ =150, n−=

1000 and HOG+BOW (see highlighted versions in first column of Table 6.5 on page 133).

Again we report mean and standard deviation over five runs of ten-fold cross-validation.

Comparison with Google Image Search. Here we re-rank the images downloaded with

GoogleImages with our fully automatic system, i.e. text-based training of the visual classifier

followed by visual re-ranking of GoogleImages. Comparative results between our approach

and GoogleImages are shown in Figure 6.12. As can be observed, our approach achieves higher

average precision for 16 out of 18 classes with only airplane and boat being outperformed by

the Google results. Those are cases where our text ranker does not perform that well, which

increases the noise in the training data and thus explains the decreased visual performance.

Images for a selected set of classes returned from both Google and our re-ranking (using the

6.7 Comparison with Other Work & Methods 142

airplane guitar leopard motorbike wristwatch
our 58.5%± 25.8 70.0%± 3.9 49.6%± 9.9 74.8%± 7.3 98.1%± 3.0

our (ok) 41.8%± 18.4 31.7%± 4.1 22.6%± 10.2 50.5%± 8.0 94.4%± 3.2
Fergus et al. (2005a) (ok) 57% 50% 59% 71% 88%

Google (ok) 50% 30% 41% 46% 70%

Table 6.7: Comparison with Fergus et al. (2005a). Average precision at 15% recall with
one standard deviation. The images are from Google Image Search and were provided by the
author. (ok) uses the same annotation as Fergus et al. (2005a). The first row of the table treats
Fergus’ ok class as in-class, unlike Fergus et al. (2005a).

learnt visual classifier applied to the Google images) are shown in Figure 6.13.

Comparison with Fergus et al. (2005a). In this experiment we re-rank the Google images

provided by Fergus et al. (2005a). In order to do so we train on the downloaded images. We

downloaded “leopard” in addition to the previously described classes. It is difficult to directly

compare the results in Fergus et al. (2005a) to our text+vision algorithm. Fergus et al. (2005a)

treats ok images as non-class, whereas our system is not tuned to distinguish good from ok

images. Due to this our system performs slightly worse than Fergus et al. (2005a), when

measured only on good images. However, it still outperforms Google image search on most

classes even in this case. Table 6.7 also shows (first row) the results when ok images from

the Fergus et al. (2005a) data are treated as in-class. As expected the performance increases

significantly for all classes.

Comparison with Berg and Forsyth (2006). Here we run our visual ranking system on

the dataset [Berg (2006)] provided by Berg and Forsyth (2006). In order to do so we downloaded

an additional set of six classes (alligator, ant, bear, frog, leopard, monkey) for which no manual

annotation was obtained. Figure 6.14 on page 144 compares the results reported in Berg and

Forsyth (2006) to the re-ranking by our visual classifier. Note that we are training on our set

of images, which might stem from a different distribution than the Berg (2006) images, but

we are testing on their test data. We compare with the “classification on test data” category

of Berg and Forsyth (2006), not to their “final dataset” which includes groundtruth from their

manual step. Their provided groundtruth, which treats abstract images as non-class, was

used. Note that our automatic algorithm produces results comparable or superior to those of

Berg and Forsyth (2006), although their algorithm requires manual intervention. Figure 6.15

6.7 Comparison with Other Work & Methods 143

car: returned by Google image search

car: re-ranking Google images using our visual re-ranking

elephant: returned by Google image search

elephant: re-ranking Google images using our visual re-ranking

guitar: returned by Google image search

guitar: re-ranking Google images using our visual re-ranking

penguin: returned by Google image search

penguin: re-ranking Google images using our visual re-ranking

Figure 6.13: Re-ranking Google images. The 34 top-ranked penguin images returned
by Google Image Search (in their original order), as well as the 34 top-ranked images after
re-ranking Google images using our visual (only) ranking. Red boxes indicate false positives.

6.7 Comparison with Other Work & Methods 144

0

20

40

60

80

100
alligator

ant

bear

beaver

dolphin
frog

giraffe

leopard

monkey

penguin

Berg et al. ours (HOG+BOW)

Figure 6.14: Comparison with Berg and Forsyth (2006). Precision at 100-image recall
level for the 10 animal classes made available by the authors of Berg and Forsyth (2006). Note
that our automatic algorithm is superior in many cases, even though the method of Berg and
Forsyth (2006) involves manual intervention.

shows the top 34 images returned by our system applied to each of the classes in the Berg

and Forsyth (2006) dataset. Many of the false positives returned for penguin are related to

the cartoon “TUX penguin”. Berg et al. are able to remove those kinds of images during

their manual selection step. Monkey and ant are the two classes where we perform worse

than Berg and Forsyth (2006). Some of the outliers in these classes are visually close to the

objects, others can be explained if one considers our automatic text ranking. They are related

to the polysemous problem (e.g . ant galaxy) or diffuseness (e.g . band names, brand names

for all sorts of devices). Many monkey images contain text, graphs or drawings which will

be picked up by the visual system and therefore spoil the performance when testing on the

Berg and Forsyth (2006) data. This again can be avoided by a manual step, as in Berg and

Forsyth (2006). Our filtering step is able to remove some of those images that contain text,

but not all of them.

6.7.2 Topic Models

Here we compare our SVM based model to three widely used topic models (pLSA [Hof-

mann (2001)], LDA [Blei et al. (2003)], and HDP [Teh et al. (2004)]). The underlying idea

of all three topic models is to model each image as a distribution over topics, whereby each

topic is a distribution over textons. For a more detailed introduction into topic models see

Section 2.2.3.

6.7 Comparison with Other Work & Methods 145

beaver: re-ranked Berg (2006) images

dolphin: re-ranked Berg (2006) images

giraffe: re-ranked Berg (2006) images

penguin: re-ranked Berg (2006) images

alligator: re-ranked Berg (2006) images

ant: re-ranked Berg (2006) images

bear: re-ranked Berg (2006) images

frog: re-ranked Berg (2006) images

leopard: re-ranked Berg (2006) images

monkey: re-ranked Berg (2006) images

Figure 6.15: Comparison with Berg and Forsyth (2006). the top 34 images returned
by our visual ranking system, when applied to the Berg and Forsyth (2006) dataset.

6.7 Comparison with Other Work & Methods 146

prec. in % ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg. std

t+v (150/1000) 52.3 39.3 68.6 66.2 57.3 87.9 66.5 78.7 83.8 63.0 57.3 48.6 64.0 72.5 82.9 62.6 93.2 79.8 68.0 7.2 (2.0)

pLSA(5) 71.2 23.4 70.2 61.9 49.6 85.7 60.0 59.9 78.2 56.7 56.3 38.2 64.5 53.4 55.7 47.0 67.2 63.6 59.0 4.4 (1.1)

pLSA(10) 70.3 21.4 69.0 59.3 53.2 84.2 66.2 61.3 78.0 63.9 65.0 45.4 61.5 62.3 65.6 52.3 74.8 74.6 62.7 5.5 (1.4)

pLSA(50) 74.8 36.7 74.2 62.2 56.5 87.3 65.5 65.6 81.0 66.4 71.5 59.9 71.8 73.2 62.4 54.5 82.9 81.5 68.2 3.8 (0.9)

pLSA(100) 73.7 38.2 73.8 63.1 56.1 88.9 66.4 63.7 80.2 67.0 72.3 57.5 71.7 72.7 65.7 55.5 85.4 78.6 68.4 3.9 (0.9)

pLSA(200) 76.1 34.6 70.9 60.2 55.8 88.7 65.8 62.6 81.8 67.6 67.8 55.2 71.6 73.9 61.9 57.5 86.1 81.0 68.4 3.7 (0.9)

pLSA(500) 76.0 37.5 68.3 61.6 54.4 88.3 66.9 63.5 81.5 65.2 68.2 55.0 73.0 69.6 63.6 64.6 86.2 88.4 68.7 3.7 (1.0)

LDA(5) 70.6 22.4 65.9 60.9 46.0 84.2 62.0 55.8 77.9 57.3 55.7 42.7 63.7 54.2 52.9 52.9 72.5 59.8 58.7 4.5 (1.2)

LDA(10) 68.9 22.7 70.0 59.0 47.2 82.6 63.9 60.5 80.7 65.5 59.9 54.7 62.3 61.1 54.2 62.5 78.3 66.5 62.2 4.6 (1.1)

LDA(50) 72.4 37.8 74.3 64.4 56.8 89.3 64.1 63.8 83.6 66.7 66.6 62.6 69.7 68.7 50.3 60.5 86.3 82.6 67.8 3.7 (0.9)

LDA(100) 74.5 36.6 74.5 63.2 56.2 85.9 62.9 62.0 83.6 66.1 65.8 62.5 70.5 71.3 53.9 62.0 86.1 80.9 67.7 3.5 (0.9)

LDA(200) 72.9 38.9 69.7 65.1 57.1 86.7 61.5 59.4 82.9 65.4 63.8 61.3 72.2 68.9 48.4 60.8 86.0 83.8 66.9 2.8 (0.7)

LDA(500) 74.3 42.2 65.3 62.7 51.6 85.3 61.7 59.5 79.1 66.2 64.2 60.4 72.0 65.5 45.9 58.8 83.0 84.6 65.7 3.0 (0.7)

HDP 71.2 33.6 76.2 61.7 53.5 86.1 71.7 76.6 81.8 64.8 70.2 60.8 72.6 74.3 55.0 60.2 83.6 80.5 68.6 2.9 (0.7)

Table 6.8: SVM vs. topic models. Given are the results as inTable 6.5 on page 133 (i.e. 15%
recall) for all object-classes. We compare the best result achieved, using BOW only, by the
SVM model to the performance achieved by using topic models (pLSA, LDA, HDP) where the
best topic is selected using groundtruth. This gives the topic models a huge advantage. Despite
this, the topic models do not clearly outperform the fully automatic SVM model. HDP used
an average of 257 topics. The last column states the mean of the classwise standard deviations
over 10 runs of training the topic models, as well as the standard deviation of the means over
all classes, in parentheses.

Given a set of topics and the test images ranked by their topic likelihood the question is

how to select the “right” topic which induces the final ranking. This problem of selecting the

right topic is difficult and there exist various approaches (see for example Fergus et al. (2005a)).

To give an idea of the performance of the topic models we avoid this topic selection stage and

select the best topic based on groundtruth. The topic that gives the best 15% recall on the

images evaluated on groundtruth is selected. This gives a huge advantage to the topic models

in Table 6.8, as groundtruth is used during testing, but still enables us to conclude that the

discriminative SVM classifier is more suitable for our task of ranking images. Each of these

models is trained on all images that we want to rank later on. This results in a ranking of

all images for each topic. The number of topics is specified for pLSA and LDA and learnt for

HDP.

Discussion. The best performing topic models are the pLSA with 500 topics 68.7% ± 1.0

closely followed by the HDP 68.6%± 0.7 which uses an average of 257 topics. Our SVM based

system performs similarly well with 68.0%±2.0 without using groundtruth for model selection.

6.8 Conclusion 147

There is also no single topic model that consistently outperforms the SVM on the majority

of classes. As mentioned before the results reported for the topic models use groundtruth to

select the best topic. This gives an unfair advantage to topic models, but it also gives evidence

to the conclusion that the SVM is the “stronger” classifier. It could be possible to combine

the high ranked images from two topics, and thereby improve the ranking, although there is

no straight forward method to do this. Figure 6.16(b) shows the top ranked images for a ten

topic pLSA. Each column represents one topic and the images are ordered by P (z|d). Some

topics correspond nicely to background images and others to “shark” images. Although, it has

to be noted that the topics seem to capture the overall appearance of the images rather than

clustering them discriminatively based on the appearance of shark, for example.

Figure 6.16(a) shows pLSA on the text (context meta-data as described earlier) of the

images, similar to what has been done in Berg and Forsyth (2006). The goal was to obtain some

grouping of the images into junk images and images belonging to the object-class specified by

the query that was used to retrieve the set of seed web pages. The context (words surrounding

the image HTML-tag) of each image are considered as a document d and each document is

modelled as a distribution of topics z (see Section 2.2.3 for details). The experiments revealed

that using context is not sufficient to reduce the large number of junk image. Even though

some sort of grouping was found, e.g . sport images versus the animal, in the case of shark, the

amount of confusion is very high. Each column represents one topic and the images are ordered

by P (z|d). One reason for the poor performance might be the ratio of good to bad images (only

< 33% are good images; see Table 6.2 on page 121).

It was also tried to combine context and visual-words which led to very similar results. In

the end we found our SVM based system to work better on these challenging images. Despite

the great amount of noise in the data our discriminative approach performed better and avoids

the difficulty to address the problem of topic selection, which was solved by manual intervention

in Berg and Forsyth (2006), something we wanted to avoid.

6.8 Conclusion

This chapter has proposed an automatic algorithm for harvesting the web and gathering hun-

dreds of images for a given query class. Thorough quantitative evaluation has shown that the

6.8 Conclusion 148

(a) P (z|d) using the HTML context only.

(b) P (z|d) using the visual-words only.
Figure 6.16: Shark images grouped depending on their pLSA topic probability.

6.8 Conclusion 149

proposed algorithm performs similarly to state of the art systems such as Fergus et al. (2005a),

while outperforming both the widely used Google Image Search and recent techniques which

rely on manual intervention [Berg and Forsyth (2006)]. Such a system can be used to improve

current searches. Most importantly, however, it was proven that the information available on

web-pages can be used as supervision for visual classifiers. This opens up a wide area and

enables us to learn potentially hundreds of visual object-class models automatically.

Chapter 7

Conclusion

This thesis has investigated two different areas of object recognition. In the first part we looked

at different methods to model local pixel context with the goal of classifying each pixel and

thereby defining a pixelwise segmentation of the image into constituent object-class regions.

The second part focused on exploiting the vast number of images that are available on

web-pages often together with a textual description in some form (filename, title, text on the

web-page). We presented a fully automatic system that uses this information to find images

that represent a user specified object-class well enough to learn a visual model. This visual

model was then applied to all downloaded images, in order to rank them based on their visual

similarity to the classes of interest.

We now show how the harvested images can be used to train segmentation models without

the need for tedious manual labelling and then give an outlook for future work.

7.1 Using Harvested Images for Segmentation

In this section we give a short overview of two preliminary experiments that show how the

images collected with our harvesting method can be used to train our Random Forest based

segmentation system.

In Chapter 5 we used strong supervision (pixelwise segmentation) during training. In order

to learn from harvested images, the training needs to succeed on weakly labelled images, i.e. only

the objects in an image are known but not their position. Figure 7.1 shows results for this

scenario on the 21-class MSRC dataset. Here we use the Random Forest classifier as described in

7.1 Using Harvested Images for Segmentation 151

image groundtruth weak supervision strong supervision

Figure 7.1: Weakly supervised segmentation on the 21-class MSRC dataset. These
images show the quality of our preliminary results using only weakly supervised training data.
It can be seen that “stuff” categories like road, sky, grass and tree are segmented reasonably
well. Also, objects that occur together with different backgrounds, such as signs and bicycles
are segmented well. The right column shows the corresponding segmentations using strong
supervision as in Chapter 5.

7.1 Using Harvested Images for Segmentation 152

image groundtruth automatic segmentation

Figure 7.2: Harvested segmentation. These results demonstrate how a segmentation
model can be learnt from the images harvested from the web using our text+visual ranker
from Chapter 6. These segmentations are obtained without any user interaction or supervision
other than the specification of the object class, i.e. car. The failures can be explained by
strong viewpoint changes or visually similar objects as the aeroplane, which is not sufficiently
represented by the negative training images.

7.2 Future Work 153

Chapter 5, but instead of using the pixelwise segmentation during training, only the occurrence

of object classes in an image was used as supervision. For example, if bicycle and road occur in

an image together, all pixels in that image are labelled as bicycle and road, for training. The

results on the 21-class MSRC dataset show that, despite this weak supervision, the Random

Forest classifier is able to provide reasonably good segmentations. The overall performance is

52.1% pixelwise classification accuracy compared to 71.5% with strong supervision. It needs

to be pointed out, however, that the system fails to learn a segmentation model for some of

the object-classes (e.g . cow, aeroplane) as they tend to occur in images together with the same

classes (grass, sky) which in the case of weak supervision does not enable the classifier to

distinguish between, e.g . cow and grass, as it has never seen cows in a different context.

The second experiment trains the Random Forest classifier on the top 100 images returned

by our text+vision harvesting algorithm for the object-class “car”. In addition, a set of 200

randomly sampled background/negative images is used. Similar to the previous experiment, all

pixels in an image are either labelled as car or background. We then apply this learnt classifier

to the 21-class MSRC dataset. Figure 7.2 shows some example images and the corresponding

segmentation using the full Random Forest based segmentation system from Chapter 5. If the

viewpoints are different, e.g . from above, the cars are not segmented. In general there are

not many false positives in this two class problem, i.e. not many object are wrongly classified

as cars, with the main exception of aeroplanes, which look like “cars with wings”. Reflective

surfaces, e.g . water, also tend to be confused with cars, probably due to the similarity with

windscreens. This problem could be overcome by a better selection of negative images, which

should contain aeroplanes and water in this case.

Both these results are quite encouraging and further demonstrate the strength of the Ran-

dom Forest classifier and its robustness to label noise. Using the ideas described in the next

section, it can be expected that these already strong results could be improved further.

7.2 Future Work

The following two sections present a few ideas and possibilities on how the methods described

in this thesis can be extended.

7.2 Future Work 154

Figure 7.3: Bottom-up segmentation based node-tests. (a) visualises the original idea
where the weighted difference of the mean responses of two rectangular regions over the red
and green channel is used in the node-test; (b) extends this idea to incorporate bottom-up
segmentation as a data driven way to define the low-level features.

7.2.1 Object Segmentation

In Chapter 4 we were minimising the intra-class distance of the model histograms, based on

the Maximum Likelihood Estimate in combination with the Kullback-Leibler divergence. It

would also be desirable to maximise the inter-class distance when building the single-histogram

class models, which would result in a more discriminative classifier. Maximising the inter-class

distance or generally merging the class histograms in a discriminative way is left for future

research.

In Chapter 5, we investigated another line of work that is based on the discriminative

Random Forest classifier. Next, we present three directions to extend our Random Forest

based object segmentation work.

Employing bottom-up context. In Chapter 4, we introduced the idea of using bottom-

up segmentation in order to identify the relevant context for a specific pixel in a content

driven manner. This idea could be exploited in combination with the strong Random Forest

classifier of Chapter 5. Currently, our Random Forest classifier selects rectangular responses

(see Figure 7.3(a)) from a “randomly” created pool, as most Random Forest based classification

or segmentation algorithms that are described in the literature do. Due to the fact that the

rectangular responses, in effect, encode the mean response in an image region relative to the

image pixel, or the weighted difference between two mean responses in the case of two rectangles,

it is imaginable that instead of using fixed sized rectangles, small segments (as in Section 4.5)

7.2 Future Work 155

can be used to compute a weighted difference of the mean responses in the regions defined by

those segments. Figure 7.3(b) illustrates this idea. Instead of the red and green rectangle that

denote the response over the respective colour channels, arbitrary shapes that are induced by

the bottom-up segmentation could be used to compute the response over the red and green

channel. This only sketches the basics of the idea and it is not entirely clear what the best

choices for the details of the implementation are. It should also be noted that there will be

huge implications in terms of efficiency, as integral images cannot be used anymore. Another

problem might be the fact that the bottom-up segments cannot be shifted across the images

(as it is done with the rectangles in order to get the responses for the whole image). Therefore,

it might be advantageous to take weighted responses of neighbouring segments. This is left

for future research and could be an interesting way to build on top of the feature selection

capabilities of Random Forests using data driven image specific low-level context.

Use of more global classifiers. Chapter 5 has proven that Random Forests can deliver

state of the art results on the segmentation task. However, it also seems to be the case that

current work hits a boundary with respect to what can be achieved using local pixel-context.

Shotton et al. (2008), Csurka and Perronnin (2008) already investigated so-called image level

priors (ILPs) or detection level priors (DLPs). The idea is to use more global classifiers to

return a classification for the whole image or for the detection of objects in the image [Evering-

ham et al. (2006, 2007, 2008)]. These global models can be based on the bag of visual-words

model or pyramid histograms [Lazebnik et al. (2006)], for example. They then induce ILPs

or DLPs respectively that can strengthen the more local segmentation methods, e.g . by ad-

justing the empirical class posterior returned by the Random Forest classifier. Future work

would include a thorough investigation of the image and detection level priors that showed big

improvements in Shotton et al. (2008), Csurka and Perronnin (2008). Despite their boost in

performance current methods seem rather ad-hoc and are not learnt jointly together with the

segmentation models which might be a worthy direction to explore. In particular, it might be

interesting to look into the idea of hierarchical Random Forests, which would allow one to stay

within one framework, while addressing classification in a more global manner. For example, a

high-level Random Forest could be learnt using spatial pyramids or bag of visual-words, also en-

coding the pixel positions in the leaf nodes in addition to the empirical class posteriors. Further

7.2 Future Work 156

low-level Random Forests can then be used to classify those areas identified by the high-level

forest. The low-level forests can use the class posteriors from the high-level ones as “priors”.

Alternatively, object-class or region specific low-level Random Forests could be trained. Closely

related to this stream of work is the incorporation of explicit context modelling, as for example

in He et al. (2004), Kumar and Hebert (2005), Rabinovich et al. (2007).

Weakly supervised Random Forest based segmentation. In Chapter 5 we use strong

supervision in the form of a pixelwise labelling of the training data. Our preliminary experi-

ments in the previous section showed that a weaker form of supervision, where only a list of

the object-classes occurring in an image is provided, can be used together with the Random

Forest classifier. The result is a relatively context dependent visual model, which leads to de-

terioration for some object classes. However, it is reasonable to assume that larger amounts of

training data with varying context will improve performance. Further work in this direction

seems interesting and promising.

7.2.2 More Harvesting

Aside from improving on the text ranking which seems difficult without using more complex

features than the binary feature vector, probably the biggest problem is the one of polysemy and

diffuse classes. Adding additional information to the textual model by employing a dictionary

as in Saenko and Darrell (2008) or other sources such as Wikipedia in Wang and Forsyth (2008)

could be a way to improve the text ranking. One way to deal with the polysemy and diffusion

problems would be to leverage multi-modal visual models to extract the different clusters of

polysemous meanings, i.e. for tiger: Tiger Woods or the animal. It would also be interesting

to divide diffuse categories described by e.g . the word airplane (airports, airplane interior,

airplane food) into smaller visually distinctive categories. This could extend our work along

the lines of Saenko and Darrell (2008). Preferably one would learn a unified model based on

textual and visual attributes that represents the various senses of a word. Similar to Saenko and

Darrell (2008) a sense model learnt from a dictionary can then be related to the text part of the

unified model. The advantage of our system is that we can rank images for which no meta-data

is available which might be more challenging for a unified model. Wang and Forsyth (2008) for

example, heavily rely on the text model for its final ranking and their vision only ranking is

7.2 Future Work 157

not particularly strong. For most of the object-classes in Berg (2006), their pure image based

ranking is significantly worse than the text ranking, whereas in our case we use the pure visual

object-class model with good results.

Currently we use the text ranker and the SVM in two consecutive stages. Combining the

probabilistic outputs of text and SVM as in Wang and Forsyth (2008) remains an interesting

addition. Using a “probabilistic extension” [Platt (1999)] for the SVM or a relevance vector

machine (RVM [Tipping (2000)]) should provide descent probability estimates based on the

visual model. The seven dimensional feature vector, however, currently does not deliver good

estimates of the posterior probabilities. This might be due to the restricted feature space (only

128 possible feature combinations) and can be overcome with a more sophisticated text model

based on a larger body of text. It is also worth investigating a more elaborate use of the text

ranking in order to train the SVM. For example, the top ranked images do not need to be

treated equally, but could be weighted depending on the text ranking score.

Our algorithm does not rely on the high precision of top returned images, e.g . from Google

Image Search. Such images play a crucial role in Fergus et al. (2005a), Li et al. (2007) and

Wang and Forsyth (2008) who use the Caltech dataset to improve over the visual models learnt

from Flickr images. Future work could take advantage of this precision by exploiting them as

a validation set to further improve on the ranking.

A large part of this thesis employed the Random Forest model and it would be interesting

to see its application to the harvesting problem. In Section 7.1 we trained the Random Forest

classifier on harvested data to segment new images into their constituent object regions thereby

making use of the high quality images retrieved by our harvesting approach. These preliminary

results are quite encouraging and can build a basis for further work in this area.

Chapter 8

Appendix

This appendix provides the derivation details for our single-histogram class models and for the

mixture model of Section 4.4.1.

8.1 Single-Histogram Class Models

This section gives the derivation for the minimum of (4.8) in the Kullback-Leibler divergence

case, and also for the Euclidean distance case as defined in (4.10).

8.1.1 Derivation of Single-Histogram Class Models

As the sum of convex functions is convex, and our feasibility region (qi ≥ 0) is also convex

the Karush-Kuhn-Tucker (KKT) conditions are sufficient for a global minimum [Boyd and

Vandenberghe (2006)].

Kullback-Leibler Divergence. This paragraph derives the solution of the minimisation

problem using the KKT conditions.

EKL :=
Nc∑
j=1

njDKL(pj ‖ q) subject to ‖ q ‖1= 1, qi ≥ 0 ∀i , (8.1)

as introduced in (4.8), can be simplified to an E ′KL and E ′′KL which reach the global minimum

8.1 Single-Histogram Class Models 159

for the same values of q:

E ′KL := −
∑
j

nj
∑
i

pji log qi ,

E ′′KL := −
∑
i

∑
j

njpji log qi .

Using a Lagrange-Multiplier together with -E ′′KL and gi = −qi the following minimum q̂ is

obtained, when minimising (8.1):

LKL =
∑
i

∑
j

njpji log qi + λ

(
1−

∑
i

qi

)
+
∑
i

µigi

δ
δqi

,KKT

⇒
∑

j n
jpji

qi
− λ− µi = 0, i = 1..V,

∑
i

qi = 1, gi ≤ 0, µi ≥ 0, µigi = 0

µigi=0,gi=−qi⇒

(∑
j n

jpji
qi

− λ

)
qi = 0, i = 1..V,

∑
i

qi = 1, gi ≤ 0 (8.2)

P
i⇒

∑
i

∑
j

njpji −
∑
i

λqi = 0,
∑
i

qi = 1, gi ≤ 0

⇒ λ =
∑
i

∑
j

njpji (8.3)

8.2, 8.3⇒ q̂i :=

∑
j n

jpji∑
i

∑
j n

jpji
=

∑
j n

jpji∑
j n

j
, , i = 1..V . (8.4)

It is obvious that −gj = q̂j ≥ 0, since in (8.1) only sums of positive numbers (histogram bins

and exemplar weights) occur, for the same reason µi ≥ 0 and therefore all KKT conditions

fulfilled and (8.4) is derived.

Euclidean Distance. See (4.10) for the problem definition repeated here:

EL2 :=
Nc∑
j=1

njDL2(p
j,q) subject to ‖ q ‖1= 1, qi ≥ 0 ∀i . (8.5)

This paragraph derives the solution to the problem of minimising EL2 subject to the constraints

defined above:

8.1 Single-Histogram Class Models 160

EL2 =
∑
i

∑
j

nj(pji − qi)2

δ
δqi⇒ −

(∑
j

2nj ·
(
pji − qi

))
= 0 ,∀i;

⇒
∑
j

njqi −
∑
j

njpji = 0

⇒ q̂i :=

∑
j n

jpji∑
j n

j
, , i = 1..V . (8.6)

Apparently all constraints are fulfilled and the solution (8.6) is equivalent to (8.4).

8.1.2 Histogram Mixture Model

Kullback-Leibler Divergence. See Section 4.4.1 (4.11) for the problem definition. In

order to reduce the number of subscripts we use the following equation:

h
D
= αa + (1− α) · b , with a 6= b , (8.7)

where a and b define two single-histogram class models. Using the definition (4.2) for DKL it

follows:

FKL :=
V∑
i=1

hi log

(
hi

αai + (1− α)bi

)
=
∑
i

hi log

(
hi

α (ai − bi) + bi

)
α̂ := arg min

α
(FKL)

= arg min
α

(∑
i

hi log (αai + (1− α)bi)

)
δ
δα⇒ −δFKL

δα
=
∑
i

hi
ai − bi

αai + (1− α)bi
= 0 .

Since there is no obvious general simple closed form solution, it is shown that FKL is convex

and thus Gauss-Newton optimisation is a good way to determine α̂. Imposing the additional

constraint 0 ≤ α̂ ≤ 1 gives:

8.2 Statistics 161

δ2FKL
δ2α

=
∑
i

hi

(
ai − bi

α (ai − bi) + bi

)2

≥ 0 ,

and therefore FKL is convex. In fact, δ
2fKLD
δ2α

> 0 since the histogram bins are all positive, a 6= b

and b 6= 0.

Euclidean Distance. Here we derive the closed form solution for the global minimum

for the case of DL2, also using (8.7):

FL2 :=
∑
i

(hi − (αai + (1− α)bi))
2

α̂ = arg min
α

(FKL)

= arg min
α

(∑
i

(
h2
i − 2 · hi(α(ai − bi) + bi) + α2(ai − bi)2 + 2αbi(ai − bi) + b2i

))
δ
δα⇒

∑
i

(
−2 · hi(ai − bi) + 2α(ai − bi)2 + 2bi(ai − bi)

)
= 0

⇒ 2
∑
i

(ai − bi) · (bi − hi) + 2α
∑
i

(ai − bi)2 = 0

⇒ α =

∑
i(ai − bi) · (hi − bi)∑

i(ai − bi)2
.

Since δ2fL2

δ2α
> 0 as well, it follows that FKL is convex and therefore, in order to fulfil 0 ≤ α̂ ≤ 1,

α̂ can be set to α̂ = arg minα′ (FL2(α
′)) with α′ ∈ {0, 1,max(0,min(1, α))}.

8.2 Statistics

This sections gives a rough idea of when all the hard work was done.

8.2.1 Code Statistics

Figure 8.1 and 8.2 report some statistics about my local code repository:

• Report Period: 2005-10-19 12:10:43 to 2009-04-01 15:04:24 (1260 days)

• Total Files: 1417

8.2 Statistics 162

commits by hour of day commits by day of week

 0

 50

 100

 150

 200

 250

 4 8 12 16 20 24

C
om

m
its

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7

C
om

m
its

commits by month of year commit by month and year

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10 11 12

C
om

m
its

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

20
05

-0
7

20
06

-0
1

20
06

-0
7

20
07

-0
1

20
07

-0
7

20
08

-0
1

20
08

-0
7

20
09

-0
1

20
09

-0
7

C
om

m
its

Figure 8.1: Code repository activity log. Shown are various statistics about the number
of commits into my code repository.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

20
05

-0
7-

01

20
06

-0
1-

01

20
06

-0
7-

01

20
07

-0
1-

01

20
07

-0
7-

01

20
08

-0
1-

01

20
08

-0
7-

01

20
09

-0
1-

01

20
09

-0
7-

01

F
ile

s

File-type #files (%) #lines (%) #lines/file

m 884 (62.39%) 95530 (15.27%) 108
cpp 31 (2.19%) 8308 (1.33%) 268
cxx 39 (2.75%) 5688 (0.91%) 145
c 23 (1.62%) 8046 (1.29%) 349
h 22 (1.55%) 2516 (0.40%) 114

hpp 6 (0.42%) 2236 (0.36%) 372

py 87 (6.14%) 61432 (9.82%) 706
sh 19 (1.34%) 825 (0.13%) 43
awk 1 (0.07%) 20 (0.00%) 20

Figure 8.2: File statistics. This shows the increase of the total number of files in the code
repository on the left and the number of files as well as their size for selected file-types on the
right.

• Total Lines of Code: 625565

• Total Commits: 1448

8.2 Statistics 163

submitted jobs by hour of day submitted jobs by day of week

 0

 1000

 2000

 3000

 4000

 5000

 6000

 4 8 12 16 20 24

su
bm

itt
ed

 jo
bs

 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000
 8500
 9000
 9500

 1 2 3 4 5 6 7

su
bm

itt
ed

 jo
bs

submitted jobs by month of year submitted jobs by month and year

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7 8 9 10 11 12

su
bm

itt
ed

 jo
bs

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

20
06

-0
1

20
06

-0
7

20
07

-0
1

20
07

-0
7

20
08

-0
1

20
08

-0
7

20
09

-0
1

20
09

-0
7

su
bm

itt
ed

 jo
bs

Figure 8.3: Cluster job submissions. Shown are various statistics about the number of
submitted jobs to one of the clusters (titus, adam).

8.2.2 Job Statistics

Figure 8.3 gives an idea of when jobs were submitted to one of the clusters:

• Report Period: 2006-03-02 17:03:40 to 2009-04-01 14:04:14 (1125 days)

• Total number of jobs submitted: 46190

Bibliography

S. Agarwal and D. Roth. Learning a sparse representation for object detection. In Proceedings
of the 7th European Conference on Computer Vision, Copenhagen, Denmark, pages 113–130,
2002. 22

Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9(7):1545–1588, 1997. 33, 38

S. Arya, D. M. Mount, Silverman R. Netanyahu, N. S., and A. Wu. An optimal algorithm for
approximate nearest neighbor searching. Journal of the ACM, 45(6):891–923, 1998. 98

J. Aslam and M. Montague. Models for metasearch. In Special Interest Group on Information
Retrieval, pages 276–284, New York, NY, USA, 2001. ACM Press. 140

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality and the smo
algorithm. In Proceedings of the 21th International Conference on Machine Learning, Alberta,
Canada, 2004. 32

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, 1999. 23

K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth, D. Blei, and M. Jordan. Matching words
and pictures. Journal of Machine Learning Research, 3:1107–1135, February 2003. 116

A. Baumberg. Reliable feature matching across widely separated views. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South
Carolina, pages 774–781, 2000. 14

S. Belongie and J. Malik. Shape matching and object recognition using shape contexts. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(24), 2002. 16

T. Berg. Animals on the web dataset, 2006. URL http://www.tamaraberg.com/
animalDataset/index.html. 142, 145, 157

T. Berg, A. Berg, J. Edwards, M. Mair, R. White, Y. Teh, E. Learned-Miller, and D. Forsyth.
Names and Faces in the News. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Washington, DC, 2004. 116

T. L. Berg and D. A. Forsyth. Animals on the web. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, New York, 2006. 11, 114, 116, 117, 129, 136,
141, 142, 144, 145, 147, 149

S. Beucher. The watershed transformation applied to image segmentation. In Scanning Mi-
croscopy International, pages 299–314, 1992. 86

G. Biau, L. Devroye, and G. Lugosi. Consistency of Random Forests and Other Averaging
Classifiers. Journal of Machine Learning Research, 9:2015–2033, September 2008. 38, 39

http://www.tamaraberg.com/animalDataset/index.html
http://www.tamaraberg.com/animalDataset/index.html

BIBLIOGRAPHY ix

C. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006. 22, 30, 32,
39, 41, 43

M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output re-
gression. In Proceedings of the 10th European Conference on Computer Vision, Marseille,
France, pages 2–15, Berlin, Heidelberg, 2008. Springer-Verlag. 32

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, January 2003. 41, 116, 144

O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classifica-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Anchorage, Alaska, 2008. 91

E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In Proceedings of the 7th
European Conference on Computer Vision, Copenhagen, Denmark, pages 109–124, 2002. 48

E. Borenstein and S. Ullman. Learning to segment. In Proceedings of the 8th European Con-
ference on Computer Vision, Prague, Czech Republic, volume 3, pages 315–328, 2004. 48

E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and bottom-up segmentation.
In Computer Vision and Pattern Recognition Workshop, volume 4, page 46, 2004. 48

A. Bosch, A. Zisserman, and X. Munoz. Scene classification via pLSA. In Proceedings of the
9th European Conference on Computer Vision, Graz, Austria, 2006. 25

A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid kernel. In
Proceedings of the International Conference on Image and Video Retrieval, 2007a. 29

A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns.
In Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro,
Brazil, 2007b. 33, 95, 101, 113

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2006. 158

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.
42, 44

Y. Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region seg-
mentation of objects in N-D images. In Proceedings of the 8th International Conference on
Computer Vision, Vancouver, Canada, volume 2, pages 105–112, 2001. 46, 108

L. Breiman. Random forests. ML Journal, 45(1):5–32, 2001. 33, 36, 37, 94

C. E. Brodley and M. A. Friedl. Identifying mislabeled training data. Journal of Artificial
Intelligence Research, 11:131–167, 1999. 31

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2:121–167, 1998. 31

M. Burl, M. Weber, and P. Perona. A probabilistic approach to object recognition using local
photometry and global geometry. In Proceedings of the 5th European Conference on Computer
Vision, Freiburg, Germany, pages 628–641, 1998. 26

BIBLIOGRAPHY x

J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986. 13

H. A. Chipman, E. L. George, and R. E. McCulloch. Bayesian ensemble learning. In Advances
in Neural Information Processing Systems, 2006. 39

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Information Theory, 14, 1968. 125

B. Collins, J. Deng, K. Li, and Fei-Fei L. Towards scalable dataset construction: An active
learning approach. In Proceedings of the 10th European Conference on Computer Vision,
Marseille, France, 2008. 116

D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002. 87

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, Cambridge, Massachusetts, USA, 2001. 43

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.
32

T. Cour, S. Yu, and J. Shi. Image Segmentation with Normalized Cuts, 2004. URL http:
//www.cis.upenn.edu/~jshi/software/. 86, 87

A. Criminisi. Microsoft research cambridge object recognition image database. version 1.0,
2004. URL http://research.microsoft.com/en-us/um/people/antcrim/data_objrec/
msrc_objcategimagedatabase_v2.zip. 50

A. Criminisi, T. Sharp, and A. Blake. GeoS: Geodesic Image Segmentation. In Proceedings of
the 10th European Conference on Computer Vision, Marseille, France, 2008. 46

G. Csurka and F. Perronnin. A Simple High Performance Approach to Semantic Segmentation.
In Proceedings of the 19th British Machine Vision Conference, Leeds, 2008. 22, 47, 58, 107,
110, 155

G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints. In
Workshop on Statistical Learning in Computer Vision, ECCV, pages 1–22, 2004. 23, 24, 57

O. G. Cula and K. J. Dana. Compact representation of bidirectional texture functions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai,
Hawaii, pages 1041–1047, December 2001. 22

N. Dalal and B Triggs. Histogram of Oriented Gradients for Human Detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, volume 2,
pages 886–893, 2005. 19, 45, 48, 103, 130

S. C. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. A. Harshman. Indexing
by latent semantic analysis. Journal of the American Society of Information, Science, 41(6):
391–407, 1990. 40

T. Deselaers, A. Criminisi, J. Winn, and A. Agarwal. Incorporating On-demand Stereo for
Real-Time Recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Minneapolis, 2007. 33

http://www.cis.upenn.edu/~jshi/software/
http://www.cis.upenn.edu/~jshi/software/
http://research.microsoft.com/en-us/um/people/antcrim/data_objrec/msrc_objcategimagedatabase_v2.zip
http://research.microsoft.com/en-us/um/people/antcrim/data_objrec/msrc_objcategimagedatabase_v2.zip

BIBLIOGRAPHY xi

L. Devroye, L. Györfy, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag New York Inc., 1996. 25

T. G. Dietterich and D. Fisher. An experimental comparison of three methods for constructing
ensembles of decision trees. In Bagging, boosting, and randomization. Machine Learning,
pages 139–157, 2000. 33

G. Dorkó and C. Schmid. Selection of scale-invariant parts for object class recognition. In
Proceedings of the 9th International Conference on Computer Vision, Nice, France, 2003.
136

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley and Sons, 2nd
edition, 2001. 30, 65

S. Eguchi and J. Copas. Interpreting Kullback-Leibler Divergence with the Neyman-Pearson
Lemma, 2005. URL http://www.ism.ac.jp/~eguchi/pdf/KL_NP.pdf. 66

C. Elkan. Using the triangle inequality to accelerate k-means. In Proceedings of the 20th
International Conference on Machine Learning, Washington DC, USA, pages 147–153, 2003.
21

M. Everingham, L. Van Gool, C. K. I. Williams, and A. Zisserman. The PASCAL Visual
Object Classes Challenge 2006 (VOC2006), 2006. URL http://pascallin.ecs.soton.ac.
uk/challenges/VOC/voc2006. 14, 24, 44, 50, 83, 155

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2007 (VOC2007) Results, 2007. URL http://www.
pascal-network.org/challenges/VOC/voc2007. 8, 44, 50, 53, 58, 83, 108, 110, 155

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2008 (VOC2008) Results, 2008. URL http://www.
pascal-network.org/challenges/VOC/voc2008. 7, 8, 44, 50, 53, 58, 83, 155

L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene categories.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San
Diego, June 2005. 25

L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning
of object categories. In Proceedings of the 9th International Conference on Computer Vision,
Nice, France, pages 1134–1141, October 2003. 26

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient matching of pictorial structures. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton
Head Island, South Carolina, volume 2, pages 2066–2073, 2000. 27

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. Inter-
national Journal of Computer Vision, 59(2):167–181, September 2004. 86, 87

R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-
invariant learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Madison, Wisconsin, volume 2, pages 264–271, June 2003. 26, 27

R. Fergus, P. Perona, and A. Zisserman. A visual category filter for Google images. In Proceed-
ings of the 8th European Conference on Computer Vision, Prague, Czech Republic. Springer-
Verlag, May 2004. 115

http://www.ism.ac.jp/~eguchi/pdf/KL_NP.pdf
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2006
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2006
http://www.pascal-network.org/challenges/VOC/voc2007
http://www.pascal-network.org/challenges/VOC/voc2007
http://www.pascal-network.org/challenges/VOC/voc2008
http://www.pascal-network.org/challenges/VOC/voc2008

BIBLIOGRAPHY xii

R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object categories from Google’s
image search. In Proceedings of the 10th International Conference on Computer Vision,
Beijing, China, 2005a. 115, 116, 119, 130, 141, 142, 146, 149, 157

R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient learning
and exhaustive recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, San Diego, 2005b. 27, 49

P.-E. Forssen and D. G. Lowe. Shape descriptors for maximally stable extremal regions. In
Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro, Brazil,
2007. 16

C. Frankel, M. J. Swain, and Athitsos V. Webseer: An image search engine for the world wide
web. Technical report, University of Chicago, 1997. 123

W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13:891–906, 1991. 16

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Machine
Learning: Proceedings, 1996. 39

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting. Annals of Statistics, 28(2):337–407, 2000. 44, 47

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–226,
1977. 99

M. Fritz and B. Schiele. Decomposition, discovery and detection of visual categories using topic
models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Anchorage, Alaska, 2008. 130

M. Fritz, B. Leibe, B. Caputo, and B. Schiele. Integrating Representative and Discriminant
Models for Object Category Detection. In Proceedings of the 10th International Conference
on Computer Vision, Beijing, China, 2005. 28

D. M. Gavrila. Multi-feature hierarchical template matching using distance transforms. In
Proceedings of the International Conference on Pattern Recognition, 1998. 17

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):
721–741, November 1984. 42

B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high dimensions:
A, texture classification example. In Proceedings of the 9th International Conference on
Computer Vision, Nice, France, pages 456–463, October 2003. 86, 87

K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets
of image features. In Proceedings of the 10th International Conference on Computer Vision,
Beijing, China, 2005. 29

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report
7694, California Institute of Technology, 2007. URL http://authors.library.caltech.
edu/7694. 7

http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694

BIBLIOGRAPHY xiii

C. G. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the 4th
Alvey Vision Conference, Manchester, pages 147–151, 1988. 13

X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán. Multiscale conditional random fields for
image labeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Washington, DC, 2004. 42, 45, 156

A. O. Hero, B. Ma, O. Michel, and J. D. Gorman. Alpha-Divergence for Classification, Indexing
and Retrieval (Revised). Technical Report, 2002. 65

G. E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. Technical
Report, 2000. 38

G. E. Hinton. Products of Experts. In Proceedings of the 9th International Conference on
Artificial Neural Networks, volume 1, pages 1–6, 1999. 37, 38

T. K. Ho. The Random Subspace Method for Constructing Decision Forests. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998. 37, 39

T. K. Ho and E. M. Kleinberg. Building projectable classifiers of arbitrary complexity. In Pro-
ceedings of the 13th International Conference on Pattern Recognition, page 880, Washington,
DC, USA, 1996. IEEE Computer Society. 38, 39

T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learn-
ing, 43:177–196, 2001. 25, 40, 80, 116, 144

H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency
for large scale image search. In Proceedings of the 10th European Conference on Computer
Vision, Marseille, France, 2008. 7

Y. Jin and D. Geman. Context and Hierarchy in a Probabilistic Image Model. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, New York, 2006. 7

T. Joachims. SVMlight. URL http://svmlight.joachims.org/. 131

F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. In Proceedings
of the 10th International Conference on Computer Vision, Beijing, China, volume 1, pages
604–610. IEEE Computer Society, 2005. 17, 21

T. Kadir and M. Brady. Scale, saliency and image description. International Journal of Com-
puter Vision, 45(2):83–105, 2001. 15

T. Kadir, A. Zisserman, and M. Brady. An affine invariant salient region detector. In Proceedings
of the 8th European Conference on Computer Vision, Prague, Czech Republic. Springer-
Verlag, May 2004. 13, 15, 130

Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local image descrip-
tors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Washington, DC, June 2004. 16

J. T. Kent and K. V. Mardia. Spatial classification using fuzzy membership models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(5):659–671, 1988. 77

E. M. Kleinberg. On the algorithmic implementation of stochastic discrimination. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2000. 39

http://svmlight.joachims.org/

BIBLIOGRAPHY xiv

E. M. Kleinberg. Stochastic discrimination. Annals of Mathematics and Artificial Intelligence,
pages 207–239, 1990. 38, 39

P. Kohli, M. P. Kumar, and Torr P. H. S. P3 & Beyond: Efficiently Solving Energies with
Higher Order Cliques. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Minneapolis, 2007. 44

P. Kohli, L. Ladický, and Torr P. H. S. Robust Higher Order Potentials for Enforcing La-
bel Consistency. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Anchorage, Alaska, 2008. 44, 47

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. Technical
Report, 2005. 43, 109

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004. 44

M. P. Kumar, P. H. S. Torr, and A. Zisserman. Extending pictorial structures for object
recognition. In Proceedings of the 15th British Machine Vision Conference, Kingston, 2004.
27

M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, San Diego, volume 1, pages 18–
25, 2005. 47

S. Kumar and M. Hebert. A Hierarchical Field Framework for Unified Context-Based Classi-
fication. In Proceedings of the 10th International Conference on Computer Vision, Beijing,
China, 2005. 45, 156

J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In Proceedings of the 18th International Conference
on Machine Learning, Williamstown, USA, 2001. 42

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society,
Series B, 50:157–224, 1988. 43

N. Lawrence and B. Schölkopf. Estimating a kernel Fisher discriminant in the presence of
label noise. In Proceedings of the 18th International Conference on Machine Learning,
Williamstown, USA, 2001. 31

S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture representation using affine-invariant
regions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Madison, Wisconsin, volume 2, pages 319–324, June 2003. 16

S. Lazebnik, C. Schmid, and J Ponce. Beyond Bags of Features: Spatial Pyramid Matching for
Recognizing Natural Scene Categories. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, New York, 2006. 24, 29, 155

D. D. Lee and S. H. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, October 1999. 40

B. Leibe and B. Schiele. Interleaved object categorization and segmentation. In Proceedings of
the 14th British Machine Vision Conference, Norwich, volume 2, pages 264–271, 2003. 17,
21, 22, 27, 28

BIBLIOGRAPHY xv

B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and segmentation with
an implicit shape model. In Workshop on Statistical Learning in Computer Vision, ECCV,
May 2004. 27, 28, 47, 48, 49

V. Lempitsky, A. Blake, and C. Rother. Image Segmentation by Branch-and-Mincut. In
Proceedings of the 10th European Conference on Computer Vision, Marseille, France, 2008.
48

M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond Local Appearance: Category Recogni-
tion from Pairwise Interactions of Simple Features. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Minneapolis, 2007. 28

V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(9):1465–1479, 2006. 33, 35, 94, 95, 97, 103,
113

T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using
three-dimensional textons. International Journal of Computer Vision, 43(1):29–44, June
2001. 18

T. Leung and J. Malik. Recognizing surfaces using three-dimensional textons. In Proceedings
of the 7th International Conference on Computer Vision, Kerkyra, Greece, pages 1010–1017,
Kerkyra, Greece, September 1999. 18, 22

J. Li, G. Wang, and L. Fei-Fei. OPTIMOL: automatic Object Picture collecTion via Incremental
MOdel Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Minneapolis, 2007. 116, 157

L. J. Li, R. Socher, and L. Fei-Fei. Towards Total Scene Understanding: Classification, Annota-
tion and Segmentation in an Automatic Framework. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2009. 46

S. Z. Li. Markov Random Field Modeling in Image Analysis. Springer-Verlag, 2001. 42

W.-H. Lin, R. Jin, and A. Hauptmann. Web Image Retrieval Re-Ranking with Relevance
Model. In Proceedings of the IADIS International Conference WWW/Internet, 2003. 115

T. Lindeberg. Feature detection with automatic scale selection. International Journal of Com-
puter Vision, 30(2):77–116, 1998. 15

T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum. Learning to detect a salient ob-
ject. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Minneapolis, 2007. 7

D. Lowe. Object recognition from local scale-invariant features. In Proceedings of the 7th
International Conference on Computer Vision, Kerkyra, Greece, pages 1150–1157, September
1999. 15, 16, 130

T. Malisiewicz and A. A. Efros. Recognition by association via learning per-exemplar distances.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, An-
chorage, Alaska, 2008. 25

R. Marée, P. Geurts, J. Piater, and L Wehenkel. Random Subwindows for Robust Image
Classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, San Diego, 2005. 33

BIBLIOGRAPHY xvi

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally
stable extremal regions. In Proceedings of the 13th British Machine Vision Conference,
Cardiff, pages 384–393, 2002. 15

K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In Proceedings of
the 7th European Conference on Computer Vision, Copenhagen, Denmark. Springer-Verlag,
2002. 15

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin,
2003. 16

K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a probabilistic as-
sembly of robust part detectors. In Proceedings of the 8th European Conference on Computer
Vision, Prague, Czech Republic. Springer-Verlag, May 2004. 130

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir,
and L. Van Gool. A comparison of affine region detectors. International Journal of Computer
Vision, 65(1/2):43–72, 2005. 14, 15

F. Moosman, B. Triggs, and F. Jurie. Fast discriminative visual codebook using randomized
clustering forests. In Advances in Neural Information Processing Systems, 2006. 33, 36

K. Morik, P. Brockhausen, and T. Joachims. Combining statistical learning with a knowledge-
based approach - A case study in intensive care monitoring. In Proceedings of the 16th
International Conference on Machine Learning, Bled, Slovenia, 1999. 32, 131

N. Morsillo, C. Pal, and R. Nelson. Mining the Web for Visual Concepts. International Work-
shop on Multimedia Data Mining, 2008. 117

D. A. Norman. The Design of Everyday Things. Basic Books, 2002. 2

A. Oliva and A. Torralba. The role of context in object recognition. Trends in Cognitive
Sciences, 11:520–527, 2007. 2

Onix. ONIX Text Retrieval Toolkit. URL http://www.lextek.com/manuals/onix/
stopwords1.html. 123

A. Opelt, A. Pinz, and A. Zisserman. A boundary-fragment-model for object detection. In
Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 2006. 17,
28, 47, 48

M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, 2007.
33

C. P. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection. In
Proceedings of the 6th International Conference on Computer Vision, Bombay, India, page
555, Washington, DC, USA, 1998. IEEE Computer Society. 19

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improv-
ing particular object retrieval in large scale image databases. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2008. 7

http://www.lextek.com/manuals/onix/stopwords1.html
http://www.lextek.com/manuals/onix/stopwords1.html

BIBLIOGRAPHY xvii

J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In Advances in Large Margin Classifiers, pages 61–74. MIT Press, 1999.
157

M. Porter, R. Boulton, and A. Macfarlane. The English (Porter2) stemming algorithm, 2002.
URL http://snowball.tartarus.org/. 123

P. Quelhas, F. Monay, J.-M. Odobez, D. Gatica, T. Tuytelaars, and L. Van Gool. Modeling
scenes with local descriptors and latent aspects. In Proceedings of the 10th International
Conference on Computer Vision, Beijing, China, pages 883–890, 2005. 25

J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993. 33, 35

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie. Objects in context.
In Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro,
Brazil, 2007. 45, 156

X. Ren and J. Malik. Learning a classification model for segmentation. In Proceedings of the
9th International Conference on Computer Vision, Nice, France, 2003. 87

L. G. Roberts. Machine perception of three-dimensional solids. Optical and electro-optical
information processing, J. Tippet et al., Ed., 1965. 1

C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive foreground extraction using iter-
ated graph cuts. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics,
volume 23, pages 309–314, New York, NY, USA, 2004. ACM Press. 9, 46, 84

C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing binary mrfs via
extended roof duality. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Minneapolis, 2007. 44

B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using multiple segmen-
tations to discover objects and their extent in image collections. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, New York, 2006. 46

K. Saenko and T. Darrell. Unsupervised Learning of Visual Sense Models for Polysemous
Words. In Advances in Neural Information Processing Systems, 2008. 140, 156

S. Savarese, Criminisi A., and J. Winn. Discriminative object class models of appearance
and shape by correlatons. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, New York, 2006. 29, 94

C. Schmid. Constructing models for content-based image retrieval. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, volume 2, pages
39–45, 2001. 18

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002. 30, 31

F. Schroff, A. Criminisi, and A. Zisserman. Single-Histogram Class Models for Image Segmen-
tation. In Proceedings of the Indian Conference on Computer Vision, Graphics and Image
Processing, 2006. 10

F. Schroff, A. Criminisi, and A. Zisserman. Harvesting Image Databases from the Web. In
Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro, Brazil,
2007. 11

http://snowball.tartarus.org/

BIBLIOGRAPHY xviii

F. Schroff, A. Criminisi, and A. Zisserman. Object class segmentation using random forests.
In Proceedings of the 19th British Machine Vision Conference, Leeds, 2008. 10

T. Serre, L. Wolf, and T. Poggio. A new biologically motivated framework for robust ob-
ject recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, San Diego, 2005. 18

E. Sharon, A. Brandt, and R. Basri. Segmentation and boundary detection using multiscale
intensity measurements. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Kauai, Hawaii, volume 1, pages 469–476, 2001. 45

T. Sharp. Implementing Decision Trees and Forests on a GPU. In Proceedings of the 10th
European Conference on Computer Vision, Marseille, France, 2008. 33

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2000. 86, 87

J. Shotton, A. Blake, and R. Cipolla. Contour-Based Learning for Object Detection. In
Proceedings of the 10th International Conference on Computer Vision, Beijing, China, 2005.
17, 28, 47, 48

J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance, shape and
context modeling for multi-class object recognition and segmentation. In Proceedings of the
9th European Conference on Computer Vision, Graz, Austria, pages 1–15, 2006. 23, 25, 47,
58, 94, 95, 97, 101, 102, 103, 107, 110, 113

J. Shotton, M. Johnson, and R. Cipolla. Semantic Texton Forests for Image Categorization
and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Anchorage, Alaska, 2008. 19, 33, 58, 94, 97, 103, 107, 108, 110, 113, 155

A. Singhal, J. Luo, and W. Zhu. Probabilistic spatial context models for scene content under-
standing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, Madison, Wisconsin, volume 1, pages 235–241, 2003. 45

J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in
videos. In Proceedings of the 9th International Conference on Computer Vision, Nice, France,
volume 2, pages 1470–1477, October 2003. 23, 24

J. Sivic and A. Zisserman. Video Google: Efficient visual search of videos. In J. Ponce,
M. Hebert, C. Schmid, and A. Zisserman, editors, Toward Category-Level Object Recognition,
volume 4170 of LNCS, pages 127–144. Springer, 2006. 7

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discovering object cate-
gories in image collections. In Proceedings of the 10th International Conference on Computer
Vision, Beijing, China, 2005. 25, 45

A. J. Storkey and C. K. I. Williams. Image modelling with position-encoding dynamic trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002. 7, 46

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen,
and C. Rother. A Comparative Study of Energy Minimization Methods for Markov Random
Fields with Smoothness-Based Priors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(6):1068–1080, June 2008. 44

BIBLIOGRAPHY xix

M. Szummer, P. Kohli, and D. Hoiem. Learning crfs using graph cuts. In Proceedings of the
10th European Conference on Computer Vision, Marseille, France, 2008. 32

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet Processes. In
Advances in Neural Information Processing Systems, 2004. 41, 144

M. E. Tipping. The relevance vector machine. In Advances in Neural Information Processing
Systems, San Mateo, CA, 2000. Morgan Kaufmann. 157

A. Torralba. Contextual priming for object detection. International Journal of Computer
Vision, 53(2):153–167, 2003. 29, 120

A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient boosting procedures
for multiclass object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Washington, DC, pages 762–769, 2004. 34

I. Tsochantaridis, T. Hofmann, T. Joachims, and Altun Y. Support vector machine learning
for interdependent and structured output spaces. In Proceedings of the 21th International
Conference on Machine Learning, Alberta, Canada, 2004. 32

L. Van Gool, T. Moons, and D. Ungureanu. Affine / photometric invariants for planar intensity
patterns. In Proceedings of the 4th European Conference on Computer Vision, Cambridge,
UK, pages 642–651. Springer-Verlag, 1996. 16

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1999. 31

M. Varma and D. Ray. Learning the discriminative power-invariance trade-off. In Proceedings
of the 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, October
2007. 32

M. Varma and A. Zisserman. Classifying images of materials: Achieving viewpoint and illumi-
nation independence. In Proceedings of the 7th European Conference on Computer Vision,
Copenhagen, Denmark, volume 3, pages 255–271. Springer-Verlag, May 2002a. 22

M. Varma and A. Zisserman. Classifying materials from images: to cluster or not to clus-
ter? In Proceedings of the 2nd International Workshop on Texture Analysis and Synthesis,
Copenhagen, Denmark, pages 139–144, May 2002b. 22

M. Varma and A. Zisserman. Texture classification: Are filter banks necessary? In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin,
volume 2, pages 691–698, June 2003. 18, 25, 69

J. Verbeek and B. Triggs. Scene Segmentation with CRFs Learned from Partially Labeled
Images. In Advances in Neural Information Processing Systems, 2008. 47, 58, 72, 107, 110

S. Vijayanarasimhan and K. Grauman. Keywords to Visual Categories: Multiple-Instance
Learning for Weakly Supervised Object Categorization. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, Anchorage, Alaska, 2008. 116

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai,
Hawaii, pages 511–518, 2001. 19, 44, 48, 94, 95

A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, 13:260–269, 1967. 43

BIBLIOGRAPHY xx

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on (hyper)trees:
Message-passing and linear programming approaches. In 40th Allerotn Conference on Com-
munication, Control and Computing, Urbana-Champaign, IL, USA, 2002. 43

F. Wang. Fuzzy supervised classification of remote sensing images. IEEE Transactions on
Geoscience and Remote Sensing, 28:194–201, 1990. 77

G. Wang and D. Forsyth. Object image retrieval by exploiting online knowledge resources. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchor-
age, Alaska, pages 1–8, 2008. 117, 156, 157

M. Weber, M. Welling, and P. Perona. Unsupervised learning of models for recognition. In
Proceedings of the 6th European Conference on Computer Vision, Dublin, Ireland, pages
18–32, 2000a. 26

M. Weber, M. Welling, and P. Perona. Towards automatic discovery of object categories. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton
Head Island, South Carolina, volume 2, pages 101–108, June 2000b. 26

J. Winn and A. Criminisi. Object Class Recognition at a Glance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, New York, 2006. 33, 97, 103

J. Winn and N. Jojic. Locus: Learning object classes with unsupervised segmentation. In
Proceedings of the 10th International Conference on Computer Vision, Beijing, China, pages
756–763, 2005. 29

J. Winn and J. Shotton. The Layout Consistent Random Field for Recognizing and Segmenting
Partially Occluded Objects. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, New York, 2006. 29

J. Winn, Criminisi, A., and T. Minka. Object Categorization by Learned Universal Visual
Dictionary. In Proceedings of the 10th International Conference on Computer Vision, Beijing,
China, 2005. 18, 21, 23, 26, 50, 57, 58, 63, 68, 69, 74, 77, 80, 103

P. Yin, A. Criminisi, J. Winn, and I. Essa. Tree-based Classifiers for Bilayer Video Segmenta-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Minneapolis, 2007. 9, 33, 94, 95

J. Zhang, M. Marszalek, S. Lazebnik, and Schmid C. Local features and kernels for classification
of texture and object categories: a comprehensive study. International Journal of Computer
Vision, 2007. 16, 24, 25, 131

L. Zhu, Y. Chen, C. Lin, and A.L. Yuille. Rapid Inference on a novel AND/OR graph: Detec-
tion, Segmentation and Parsing of Articulated Deformable Objects in Cluttered Backgrounds.
In Advances in Neural Information Processing Systems, 2007. 7, 46

Index

abstract, 119
Alpha-Divergence, 65
α-expansion, 44
αβ-swap, 44
AP, see average precision
average precision, 58

background class, 53
bag of visual-words, 23, 130
bagging, 36
baseline classifier, 72
Bayes risk, 25
Bhattacharyya, 65
boundary fragment, 28
bounding box, 9, 55
BOW, see bag of visual-words

C, see number of classes
Canny edge detector, 13
Chamfer distance, 27, 28
Chi-squared distance, 64, 65
Chow-Liu dependence tree, 125
classification

image, 7
object, 8
pixelwise, 56, 60
region-level, 8, 56, 57
scene, 8

classification performance
average class, 57
pixelwise, 57

classifier
discriminative, 31
generative, 31
maximum margin, 32

codebook, 22
colour histograms, 72
Conditional Random Field, 42
consistent

classifier, 25, 38
universally, 25

context, 3, 60

CRF, see Conditional Random Field
cross validation, 131

decision-tree parameters, 37
detection level priors, 155
difference of Gaussians, 15
difftest, 102
Dirichlet prior, 125
discriminative learning, 107, 113
distance measure, 64
DLPs, see detection level priors
dynamic programming, 43

EM, see Expectation Maximisation
empirical class posteriors, 36, 93
enrichment, 39
entropy, 37
Euclidean distance, 64, 65, 68
evidence, 31
exemplar, 64, 65
exemplar histograms, 101
Expectation Maximisation, 22, 41

F17 filter bank, 103
factorisation, 126
feature

kernel, 94
selection, 97, 107
space, 36
types, 100

filter
Gabor, 18
Gaussian, 18

filter bank, 18, 103
Fisher’s linear discriminant, 101
fixed-tree, 98, 99
Frobenious norm, 40

gatetest, 101
Gaussian Mixture Model, 22
GMM, see Gaussian Mixture Model
graph-cuts, 44, 83
groundtruth annotation, 55

INDEX xxii

Haar wavelet, 19
hard quantisation, see hard assignment
Harris corner detector, 13
HDP, see Hierarchical Dirichlet Process
Hierarchical Dirichlet Process, 41, 116
hierarchical tests, 98
histogram

colour, 122
gradient, 122

histogram intersection, 65
Histograms of Oriented Gradients, 19, 103, 130
HOG, see Histograms of Oriented Gradients
Hough voting space, 28
hyperplane, 101

ILPs, see image level priors
image description, see image representation
image level priors, 155
image representation, 61

dense, 13
sparse, 13

image segmentation, 46
Implicit Shape Model, 28
in-class, 119
information gain, 37
integral image, 155
inter-class distance, 76, 154
interest point detector, 13

Canny edge detector, 13
difference of Gaussians, 15
Harris corner detector, 13
maximally stable extremal regions, 15
salient affine invariant regions, 15

intersection measure, see overlap score
intra-class distance, 76, 154
ISM, see Implicit Shape Model

junction tree algorithm, 43

k-means clustering, 20, 71
k-nearest neighbour, 25, 61, 64, 72
k-NN, see k-nearest neighbour
Karush-Kuhn-Tucker, 158
kd-tree, 99
KKT, see Karush-Kuhn-Tucker
KL, see Kullback-Leibler divergence
Kullback-Leibler divergence, 64, 65

L2 distance, see Euclidean distance
Lagrange-Multiplier, 159
Laplace smoothing, 125
Laplacian of Gaussians, 18

Latent Dirichlet Allocation, 25, 41, 116
Latent Semantic Analysis, 40
LDA, see Latent Dirichlet Allocation
likelihood, 31
linear classifier, 101
linear discrimination, 101
logistic regression, 126
low-level features, 106
LSA, see Latent Semantic Analysis

MAP, see maximum a posteriori
Markov chain Monte Carlo, 39
Markov property, 43
Markov Random Field, 42
max-flow, 44
max-product, 43
max-sum, 43
maximally stable extremal regions, 15
maximum a posteriori, 43
maximum depth of decision-trees, 37
maximum margin classifiers, 32
Maximum-Likelihood Estimate, 65
MDL, see Minimal Description Length
message passing, 43
min-cut, 44
Minimal Description Length, 27
mixture of classes, 77
MLE, see Maximum-Likelihood Estimate
MR8, 18
MRF, see Markove Random Field
MSER, see maximally stable extremal regions,

16
MSRC datasets, 50
multi-class mixture model, 79
multi-scale Harris, 15

naïve Bayes, 126
nearest neighbour, see k-nearest neighbour
node-test, 34, 36, 94, 100
non-class, 119
non-fixed decision-tree, 100
non-negative matrix factorisation, 40
number of classes, 65
number of decision-trees, 36

object detection, 9, 83
object recognition challenge, 53
object segmentation, 9, 46, 94
offset, 105
oriented Chamfer matching, 28
overlap score, 56

INDEX xxiii

P, see node-test (pool)
partition function, 125
PASCAL, 50, 53
pattern recognition, 30
PCA, see Principal Component Analysis
PDF, see probability density function
performance measure, 56
pixel-differences, 100
pixelwise

classification, 63
segmentation, 50

pLSA, see probabilistic Latent Semantic Anal-
ysis

posterior probability, 31
Principal Component Analysis, 16, 42
prior, 31
probabilistic Latent Semantic Analysis, 25, 40,

80, 116
probability density function, 22
projectability, 39
projection, 101

QBPO, see quadratic pseudo-boolean optimi-
sation

quadratic pseudo-boolean optimisation, 44
quantisation

hard, 21
soft, 22

radial basis function kernel, 32, 131
Random Forest classifier, 32, 113
RBF, see radial basis function kernel
rectangles, 104
region detector

difference of Gaussians, 15
maximally stable extremal regions, 15
multi-scale Harris, 15
salient affine invariant regions, 15

region detectors, 130
region-level classification, 63, 68
regions of interest, see interest point detectors
response, 95

accumulated, 95
RGB features, 102

salient affine invariant regions, 15
salient objects, 7
Scale Invariant Feature Transform, 16
SD, see Stochastic Discrimination
segmentation

bottom-up, 45

Felzenszwalb, 86
mean-shift, 86
normalised-cuts, 86
top-down, 45
watershed, 86

semantic image segmentation, 60
shape models

explicit, 23
geometric, 23
implicit, 23

SHCM, see single-histogram class model
SIFT, see Scale Invariant Feature Transform
single-histogram class model, 61, 64, 72
singular value decomposition, 40
sliding-window, 63
soft assignment, 22
soft quantisation, see soft assignment
stemming, 123
Stochastic Discrimination, 39
stopping, 123
stopping criterion, 37
submodular, 44
support vector machine, 24, 31
SVM, see support vector machine

testing, 65
texton histogram models, 23
TextonBoost, 101
training, 65
tree-reweighted message passing, 43
TRW-S, see tree-reweighted message passing

uniformity, 39
unigram model, 41
union measure, see overlap score

V textons, 61
V vocabulary size, 65
vector space, 30
visual-codebook, 23
visual-words, 23, see bag of visual-words

bag of visual-words, 13
VOC

challenge, 44, 50
dataset, 44, 50

weak classifiers, 101
window size, 104

	Introduction
	Challenges
	Problem Statement
	Thesis Outline

	Literature & Methods
	Low-Level Features and Object-Class Models
	Image and Region Description
	Visual Object-Class Models
	Summary

	Classifiers and Generative Models
	Support Vector Machines
	Random Forest Classifier
	Topic Models
	Energy Minimisation for Multi-Label Image Segmentation

	Object Recognition
	Segmenting Images into Object Regions
	Conclusion

	Object Segmentation Datasets
	MSRC Datasets
	Pascal Visual Object-Class Dataset
	Performance Measures
	Region-Level Classification
	Pixelwise Classification
	Average Class Performance
	Average Precision

	Summary

	Semantic Segmentation via Texton Models
	Texton Based Segmentation Algorithm
	Texton Histogram Models
	Context Regions for Histogram based Classification
	Classification

	Single-Histogram Class Models
	Learning the Single-Histogram Class Models
	Results: Region-Level Classification

	Object Segmentation Results and Comparative Evaluation
	The Effect of the Window and Vocabulary Size
	Influence of Methods to Build the Texton Vocabulary
	Keeping all Exemplar Histograms vs. Single-Histogram Class Models
	Discussion

	Modelling Test Regions as a Mixture of Classes
	Two-Class Mixture Model
	Multi-Class Mixture Model
	Evaluation of the Two-Class Mixture Model
	Exploiting the Mixture Model
	Discussion

	Pixel Context based on Bottom-Up Segmentations
	Introduction to Bottom-Up Segmentation
	Combining Multiple Segmentations
	Experimental Evaluation
	Discussion

	Conclusion

	Semantic Segmentation via a Discriminative Model
	Random Forests for Object Segmentation
	A General Node-Test

	Generalising Single-Histogram Class Models in Random Forests
	Casting the Nearest Neighbour Classifier into Decision-Tree Terminology

	Relationship of Various Feature Types
	Parameter Evaluation and Segmentation Results
	Spatial Context: Offset and Windowsize
	Number of Decision-Trees and ``Randomness''
	Combining Low-Level Feature Types
	Full System with CRF

	Conclusion

	Harvesting Images from the Web
	Related Work
	The Datasets
	Data Collection
	Groundtruth Annotation

	Filtering Drawings & Abstract Images
	Learning the Filter

	Ranking on Textual Features
	Image Ranking
	Text Ranking Results

	Ranking on Visual Features
	Visual Features
	Training the Visual Classifier

	Results for Textual/Visual Image Ranking
	Discussion

	Comparison with Other Work & Methods
	Comparing with Other Work
	Topic Models

	Conclusion

	Conclusion
	Using Harvested Images for Segmentation
	Future Work
	Object Segmentation
	More Harvesting

	Appendix
	Single-Histogram Class Models
	 Derivation of Single-Histogram Class Models
	 Histogram Mixture Model

	Statistics
	Code Statistics
	Job Statistics

	Bibliography
	Index

