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Abstract

We propose an algorithm to cluster video shots by the location in which they were
captured. Each shot is represented as a set of keyframes and each keyframe is represented
by a histogram of textons. Clustering is performed using an energy-based formulation.
We propose an energy function for the clusters that matches the expected distribution of
viewpoints in any one location and use the chi-squared distance to measure the similarity
of two shots. We also add a temporal prior to model the fact that temporally neighboring
shots are more likely to have been captured in the same location. We test our algorithm
on both home videos and professionally edited footage (sitcoms). Quantitative results
are presented to justify each choice made in the design of our algorithm, as well as
comparisons with k-means, connected components, and spectral clustering.

1 Introduction
Location is a useful source of information for a variety of tasks. Just as users may want to
tag and search their personal photo collections and videos for specific people, they may also
want to specify a location to further narrow down the search. Users may also want to browse
videos by location, annotate locations, or create location specific compilations.

In this paper, we propose an algorithm that uses visual information to cluster video shots
by the location in which they were captured. We demonstrate our algorithm on both home
videos and professionally edited footage such as sitcoms [1, 20]. In the context of home
movies, location generally means a specific room in the house, or a frequently visited place
outside, such as in the garden, or at the local park. In the context of sitcoms, location means
a film “set” such as the coffee shop in the sitcom “Friends.” We chose to develop an unsuper-
vised clustering algorithm. Such algorithms can be combined with manual intervention to
allow efficient tagging, as has been demonstrated by the use of face recognition in commer-
cial photo organization software [2, 5]. In these systems, the primary use of face recognition
is to cluster faces into groups that can all be tagged at the same time.

Our algorithm breaks the video into shots first [6]. This is based on a simple color
histogram algorithm. It is important to fully represent the visual varieties in each shot. We
empirically compare three approaches: (1) Using a single keyframe, the middleframe of the
shot. (2) Using multiple keyframes sampled uniformly in time from the video [17]. And
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(3) Stitching the frames into a mosaic [1]. Using multiple keyframes is a robust way to
ensure that the full variety of the shot is captured. This is confirmed by our results, where
this second approach performs slightly better than the other two.

Given the keyframes, we need to measure the similarity between each pair of shots. We
considered two approaches: (1) Each keyframe is represented by a histogram of textons [4]
and the chi-squared distance between the histograms is used to measure similarity. (2) Each
keyframe is represented by a bag-of-words representation computed using vocabulary trees
[14] and based on MSER features [11]. The similarity score between keyframes is then
computed using Term Frequency Inverse Document Frequency (TF-IDF) scoring [18]. Em-
pirically we found the first approach to perform substantially better.

The last step in the design of our algorithm is the core clustering algorithm. Again, we
considered several choices: (1) k-means, (2) a “connected components” algorithm, (3) a
spectral clustering algorithm [12], and (4) a model-based algorithm [9] using an energy
function that is specifically designed to model the expected shape of clusters for the task
at hand. In particular, intuition about the likely distribution of viewpoints and their overlap
in a typical room provided motivation for the specific energy function used, which is shown
to outperform the other methods in our experiments.

This completes the visual part of our algorithm. As subsequent shots in a video are
likely to have been captured at the same location it is reasonable to incorporate this prior
knowledge into the clustering process. We show how a temporal prior1 can be added to
the energy function in our model-based clustering algorithm, and was found to improve
performance significantly.

Throughout the paper we provide quantitative empirical evaluations on both home videos
and professionally edited content (4 episodes of the sitcom “Friends”) to justify each choice
made in the design of our algorithm. These evaluations are performed using manually-
specified ground-truth location labels. We treat the problem as a binary classification task.
Either two shots are at the same location or not. We are then able to plot ROC curves; i.e.
the false positive classification rate against the true positive rate.

2 Algorithm

2.1 Computing and Representing Shots

The first step in our algorithm is to break the video into shots [6]. We use a simple algorithm
based on color histograms and choose a parameter setting that tends to result in an overseg-
mentation of the video, as we want to ensure that each shot contains just one location.

Each shot typically contains between a few 10s and a few 100s of frames. There are
three main approaches to representing the multiple frames in a shot. The simplest approach
is to use a single keyframe, typically the middle frame. Another approach is to use multiple
keyframes [17]. Finally the multiple frames (or a subsampling of them) can be stitched into
a mosaic [1]. We illustrate these three choices in Figure 1(a).

To choose the best method, we empirically compared these three choices (keeping all
other components of the algorithm identical.) The multiple keyframes are sampled uniformly

1In general videos, particularly home videos, there is rarely enough temporal consistency to perform a temporal
segmentation into scenes, as has been the focus of a lot of work dedicated solely to processing professionally edited
content such as TV shows and full length movies [1, 6, 10, 20]. We argue that for clustering arbitrary videos by
location, a temporal prior is more appropriate than a temporal segmentation.
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(1) Single Keyframe

(2) Multiple Keyframes

(3) Stitched Mosaic

(a) Shot Representations
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(b) Home Videos
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(c) Friends Sitcom
Figure 1: Shot Representation: (a) Three approaches to representing a video shot: (1) use a single
keyframe, (2) use multiple keyframes, and (3) stitch the keyframes into a mosaic. (b) and (c) Empirical
results show the multiple keyframe approach to perform slightly better than the other approaches. See
Section 3 for the details of the data and how the evaluations are performed.

every 20 frames from the shot. The mosaic is constructed using the same frames. The details
of how we performed the evaluation are contained in Section 3. We include ROC curves
for two types of videos: (1) home videos and (2) professionally edited content, specifically
episodes of the TV sitcom “Friends”. The details of the data are included in Table 1 in
Section 3. The results in Figure 1(b) and (c) are each averages over 4 videos. The multiple
keyframe approach performs slightly better than the other two approaches.

2.2 Inter-Keyframe Similarity Measure

Much of the prior work on clustering or recognizing location in video [7, 13, 17, 19] has
focused on the matching cost between a pair of shots or keyframes, or the closely related
question of the representation. In particular, Torralba et al. [19] used GIST features, Schaf-
falitzky and Zisserman considered feature point matching [17], Ni et al. [13] used an epitome
based representation, and Heritier et al. [7] used Latent Dirichlet Allocation [3].

Here we explore two approaches. The first representation consists of a histogram of tex-
tons [4]. First, a texton vocabulary consisting of 128 textons is learnt offline using randomly
sampled 5×5 patches and k-means clustering. For each keyframe in a shot we extract 5×5
patches in a dense grid. Each patch is then assigned to the closest texton. Finally, by aggre-
gating over the entire keyframe we compute a histogram of textons for that keyframe. See
Figure 2(a) for an illustration. We compared (results omitted) a number of different distance
metrics (L2, L1, chi-squared) to compute the distance between a pair of texton histograms
and found the chi-squared distance to perform the best. We also considered the use of Latent
Dirichlet Allocation (LDA) [3] to learn a set of topic histograms, as in Heritier et al. [7].
Empirically we found LDA gave no significant improvement in performance.

Our second inter-keyframe distance function is based on point feature matching using the
bag-of-words approach with vocabulary trees proposed by Nister and Stewenius [14]. First,
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Extract Dense 5x5 Patches KMeans Clustering

Texton Histogram

Assign to Closest Texton

Texton Assignment

Example Textons

Randomly Sample 5x5 Patches

(a) Computation of Texton Histograms
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(b) Home Videos
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(c) Friends Sitcom
Figure 2: Inter-Keyframe Similarity Measure: (a) A set of textons are learnt offline using k-means
clustering. A dense grid of 5× 5 patches is extracted from each keyframe, matched to the closest
texton, and a histogram computed. We use the chi-squared distance to measure the similarity of texton
histograms. (b) and (c) Empirical results show that texton histograms significantly outperform the use
of MSER features, and there is little benefit to combining the two approaches.

a set of affine invariant features are found using MSER [11]. A visual word is assigned to
each image patch extracted by the features using a vocabulary tree. For our experiments, the
vocabulary tree had one million leaf nodes. Finally, the similarity score between images is
computed using Term Frequency Inverse Document Frequency (TF-IDF) scoring [18].

In Figures 2(b) and (c) we include results comparing texton histograms with the MSER
feature matches. The results show that the approach of using texton histograms significantly
outperforms the MSER feature based matching. We suspect that this difference in perfor-
mance is because the MSER feature matching only provides information when there is a
significant overlap in viewpoint. On the other had, the texton histograms provide infor-
mation even when there is little or no overlap in viewpoint. We experimented with ways
of combining the two approaches, but with no improvement in the results. It appears that
whenever there is significant overlap in viewpoint and the MSER features provide a strong
match, the texton histograms also provide a strong match. In Figures 2(b) and (c) we include
the results of a simple weighed combination of the two measures to illustrate this point.

2.3 Cluster Model
We expect the set of shots captured in a single location to have a characteristic structure. Fig-
ure 3(a) illustrates a possible set of viewpoints in a room. For simplicity, we do not illustrate
pans or zooms, although they may be present as well. Most viewpoints have substantial over-
lap with a few others. Such overlapping pairs of viewpoints can be expected to match well
for many possible similarity measures, including the texton-based measure in Section 2.2.
On the other hand, there are many pairs of viewpoints that have little, if any, overlap. The
similarity of these pairs will vary significantly depending on the complexity of the scene.

For simplicity, assume that there is a single keyframe per shot. We explain how to extend
the algorithm to deal with multiple keyframes in Section 2.5. We first compute the texton
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Table

Couch

ChairChair

(a) Example Distribution of Viewpoints in a Room
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(b) Home Videos
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(c) Friends Sitcom
Figure 3: Cluster models: (a) An illustration of possible viewpoints in a room. For simplicity we do
not show pans and zooms. This figure illustrates the intuition behind our choice of energy function.
In (a) each viewpoint is close to a number of others. This suggests locally well connected clusters,
which will be represented by our choice of energy function. Empirical results, (b) and (c), show that
our energy-based algorithm with a cluster model based on the intuition in (a) outperforms k-means
clustering, a simple connected components algorithm, and a spectral clustering algorithm [12].

similarity measure in Section 2.2 between all pairs of keyframes. This sets up a fully con-
nected graph where the nodes are the keyframes and the length of each edge is the similarity
measure between the corresponding pair of keyframes.

We would like to develop a clustering algorithm that allows us to model the likely cluster
shapes and connectivity based on the intuition in Figure 3(a). An approach that allows us to
do this is the “model-based” approach of [9]. In this approach, almost any energy function
can be used. This freedom to choose an energy function allows us to encode a preference for
a certain shape of clusters. Our choice of energy function is based on the observation that
each viewpoint is close to a number of others in Figure 3(a) by encouraging locally well con-
nected clusters. Specifically, although clusters can be “elongated” in shape they need to be
well connected, as would be the case in Figure 3(a) due to the overlapping viewpoints. This
differs from standard k-means where usually ball shaped clusters are assumed, or standard
agglomerative clustering where also either very compact or very loosely connected clusters
are assumed.

Assume that the graph has already been split into a set of disjoint clusters {C1,C2, . . .}.
The cluster energy is then defined as a sum of energies, one for each cluster:

ECluster = ∑
i

MST(CN
i ). (1)

In this equation MST(CN
i ) is the length of the minimum spanning tree (MST) of CN

i and:

CN
i = CN−1

i −MST (CN−1
i ), C1

i = Ci (2)

is a recursive definition which says that CN
i should be computed by removing2 all of the edges

2To avoid the possibility of any cluster becoming disconnected, instead of removing the edges, we actually
replace the edges with the longest edge in the cluster Ci.
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(a) GT Location Labeling for a Home Video (322 shots)

(b) GT Location Labeling for an Episode of a Sitcom (337 shots)
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with Temporal Prior
without Temporal Prior
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(c) Home Videos (d) Friends Sitcom
Figure 4: Temporal Prior: (a) and (b) Color-coded visualizations of ground-truthed location la-
bellings of a home video and a sitcom. Shots with the same location have the same color. Both videos
exhibit a large degree of temporal coherence, especially the sitcom. (c) and (d) Empirical results which
show that the addition of a temporal prior improves performance.

in the minimum spanning tree (MST) from CN−1
i ; i.e. CN

i is the graph obtained after removing
N − 1 MSTs in sequence from Ci. In summary, the energy cost of a cluster MST(CN

i ) is
the length of its MST, after having previously removed N − 1 MSTs. In this definition,
N = α(|Ci|− 1) is a constant proportion of the size of the cluster |Ci|− 1. We use |Ci|− 1
rather than |Ci| because |Ci|−1 is the number of other nodes that each node is connected to.

In Figures 3(b) and (c) we present results comparing our algorithm with k-means cluster-
ing, simple connected components (equivalent to single-link agglomerative clustering), and
a spectral clustering algorithm [12]. We find that on both types of data, our cluster model
performs the best. Following [9] our energy function is a generalization of the single-link
energy and thus ensures locally connected clusters as outlined in the intuition above. The
improved performance confirms the intuition of the cluster shapes as induced by Figure 3(a).

2.4 Temporal Prior
Two subsequent shots in a video are more likely to be captured in the same location than
not. This is particularly true for professionally edited footage such as sitcoms and movies.
It is also true for home videos, although to a lessor extent. In Figure 4(a) and (b) we include
visualizations of the temporal smoothness for both a home video and one episode of a sitcom.
We color-code the location (ground-truthed by a human) and display the sequence of frames
as a horizontal bar. In previous work on clustering sitcoms [1, 20] a temporal segmentation
was used as a first step to break the video into scenes. While possibly appropriate for sitcoms,
the reduced temporal consistency in the home video makes such an algorithm inappropriate.
Instead, we add a temporal prior3 to yield a global energy function:

EGlobal = ECluster +λETemporal. (3)

The temporal prior is:
ETemporal = ∑

t
δ (st ,st+1) (4)

3Another approach would have been to weight the texton-based match scores with the temporal separation of
the shots. Such an approach is less principled than the addition of a temporal prior.
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where δ (st ,st+1) is an indicator function:

δ (st ,st+1) =
{

1 st ∈Ci, st+1 ∈C j, i 6= j
0 otherwise. (5)

Equations (4) and (5) count the number of times that temporally neighboring shots belong
to different clusters. In Markov Random Field terminology, these equations describe a Potts
model [15] where a penalty is added between neighboring frames if they occur in a different
location. The constant weighting factor λ was chosen empirically to be λ = 100 (in all
experiments). Figures 4(c) and (d) include empirical results that show the temporal prior
improves performance on both the home video and sitcom data.

2.5 Optimization

As in [9], we optimize the global energy EGlobal in Equation (3) using a greedy algorithm
that is equivalent to agglomerative clustering. We initialize the algorithm by assigning each
shot to its own cluster. With a single keyframe or a stitched mosaic, each cluster starts with
a single node. With multiple keyframes, each cluster starts with multiple nodes. Pairs of
clusters are iteratively merged. In each iteration, we consider every possible pair of merges
and compute the change to EGlobal . The merge that results in the lowest new value of EGlobal
is then applied.

A natural question is when to terminate the algorithm. One possible approach would be
to threshold the change in EGlobal . Such simple approaches rarely work well. Determining
the number of clusters is a very difficult problem, arguably far harder than estimating the
best K clusters for a given K. In many cases, however, estimating the number of clusters
accurately is not essential. In photo organization systems that use face clustering [2, 5], the
user interface dictates that only small clusters, an “over-clustering”, are presented to the user.
For the quantitative evaluation in Section 3, our approach is to cluster for every possible K
and plot parametric ROC curves across K.

Two possible criticisms of the above algorithm are that it is greedy, and that there is no
guarantee of convergence to the global minimum. Note, however, that due to the combinato-
rial nature of the problem, most clustering algorithms contain a greedy component, including
k-means, and spectral clustering algorithms such as [12]. Because our algorithm allows the
use of more complex cluster energies such as those in Equations (1) and (3), we found it
outperforms these other approaches.

3 Experiments

We experimented on 8 videos, 4 home videos (captured by 3 different people in 3 different
houses), and 4 episodes of the sitcom “Friends”. The home videos were generally captured
over multiple days, although the segments were consecutive on the tapes. Table 1 includes
some statistics, including the length in minutes, the number of shots, and the number of
distinct locations in the manually labeled ground-truth.

Our quantitative evaluations (including those in Figures 1, 2, 3, and 4) are based on
treating the problem as binary classification, where the algorithm must decide whether two
shots are in the same location or not. Given a clustering {C1,C2, . . .}, and the ground-truth
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Length Shots Locs
Home 1 27:00 Min 322 10
Home 2 24:00 Min 396 12
Home 3 23:00 Min 313 7
Home 4 20:00 Min 146 4

Length Shots Locs
Friends 1 20:26 Min 337 10
Friends 2 20:00 Min 376 6
Friends 3 19:50 Min 390 11
Friends 4 18:57 Min 296 6

Table 1: Data Statistics: We experimented on 4 home videos and 4 epsiodes of the sitcom “Friends”.
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(a) Home Videos (b) Friends Sitcom
Figure 5: Quantitative Results: A comparison of our energy-based algorithm (with multiple
keyframes and a temporal prior) with k-means, a spectral clustering algorithm [12], and a connected
components algorithm (all without multiple keyframes and a temporal prior.) The combination of our
cluster-model, multiple keyframes, and a temporal prior yields a significant performance improvement.

clustering {CGT
1 ,CGT

2 , . . .} we compute the false positive and true positive rates:

FPR =
∣∣{(si,s j) ∈ FGT | i < j, si ∈Ck, s j ∈Ck

}∣∣/ ∣∣FGT∣∣
TPR =

∣∣{(si,s j) ∈ PGT | i < j, si ∈Ck, s j ∈Ck
}∣∣/ ∣∣PGT∣∣

where PGT =
{
(si,s j) | i < j, si ∈CGT

k , s j ∈CGT
k

}
is the set of unordered positive match shot-

pairs in the ground truth and FGT =
{
(si,s j) | i < j, si ∈CGT

k , s j ∈CGT
l , l 6= k

}
is the set of

unordered negative match shot-pairs. False positives are unordered shot-pairs that are not in
the same cluster in the ground-truth but in the same cluster in the evaluated clustering. True
positives are unordered shot pairs that are in the same cluster in both clusterings. Rather than
combining these two measures as in the Rand Index [8, 16], we keep them separate and plot
a ROC curve (across the iteration of the algorithm, i.e. the number of clusters.) We average
the ROC curves over a fixed size window of 100 shots that is slid through the video, and
subsequently average over the 4 videos of each type.

In Figure 5 we compare our algorithm with k-means, a spectral clustering algorithm [12],
and a connected components algorithm (equivalent to single-link agglomerative clustering).
The main benefits of our algorithm are: (1) it allows the use of more complex cluster energies
such as Equation (1), (2) it is straight-forward to add a temporal prior as in Equation (3), and
(3) it is easy to use multiple keyframes. In Figure 5 we present results obtained by our
algorithm with these enhancements. The results for the other algorithms do not, as it would
be hard, if possible at all, to add them. All algorithms use the same texton-based similarity
measure. To give a sense of the numerical results for the “Friends” results in Figure 5 at a
False Positive Rate of 20%, the True Positive Rate is 66.8% for our algorithms and 56.2%
for the spectral clustering algorithm.

Citation
Citation
{Ng, Jordan, and Weiss} 2002

Citation
Citation
{Hubert and Arabie} 1985

Citation
Citation
{Rand} 1971

Citation
Citation
{Ng, Jordan, and Weiss} 2002



SCHROFF, ZITNICK, BAKER: CLUSTERING VIDEOS BY LOCATION 9

Shot 125 Shot 126 Shot 127 Shot 128

Shot 129 Shot 131 Shot 285

Shot 304 Shot 305 Shot 306 Shot 307

Shot 308 Shot 319 Shot 321Shot 320

Figure 6: An example cluster illustrating the main points of our algorithm. See text for more details.

In Figures 6 and 7 we include qualitative results for one of the home videos, “Home
1”. The algorithm uses multiple keyframes, texton histograms, our model-based energy
function, and the temporal prior. We include the stitched mosaics to help better visualize the
shots, although the results in the figures use the multiple keyframes approach of Section 2.1.
The first thing to note is the wide variety of viewpoints in each cluster. E.g. the viewpoints
of Shots 319–321 are very different from those of 125–129, 285, and 304–306. The pink
couch, the most visually dominant object in the room, is present in most shots, but not in
shots 127–129, and 320. Similarly, the viewpoints of 88 and 95 are very different from
those of 89–92, and 96. Secondly, note how the viewpoints qualitatively match the example
distribution in Figure 3(a). Also note that even pairs of overlapping viewpoints (e.g. 320 and
321) are widely separated enough that feature-matching would be very difficult, if possible
at all. Such shot-pairs explain the poor performance of feature matching in Figure 2.

Another point to note is the importance of the temporal prior. E.g. shots 127-129 are
visually very different from the rest of the cluser, but are sandwiched in time between shots
125, 126, and 131. Similarly, shot 88 which is a view of the other half of the room, is visually
very different from the rest of the cluser in Figure 7, but is between shot 88 and shots 90–92.

Finally, shot 96 shows how the use of multiple keyframes can help in certain situations.
The set of keyframes used in shot 96 includes one containing the boy in the orange shirt. It
is likely that this keyframe is reasonably well matched to shots 90-92. Another keyframe
in shot 96 includes the white couch and the bookshelf in the background. This keyframe is
probably a good match for the upper right keyframe in shot 88.

4 Conclusion
We have presented an algorithm to cluster video shots by the location in which they were
captured. We have systematically investigated each component in the algorithm: (1) how to
repesent a shot (Section 2.1), (2) the similarity measure between a pair of keyframes (Sec-
tion 2.2), (3) the cluster model (Section 2.3), and (4) the addition of a temporal prior (Sec-
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Shot 88
Shot 89 Shot 90

Shot 91 Shot 92 Shot 95 Shot 96

Figure 7: An example cluster illustrating the main points of our algorithm. See text for more details.

tion 2.4). At each step, we empirically compared the alternatives and chose the best one. The
combination of all the enhancements is a significant improvement over baseline algorithms
such as k-means and spectral clustering [12] which do not use those enhancements.

One of the apparent difficulties for clustering by location is the presence of transient
foreground objects, primarily people. The same people wearing the same clothing may well
appear in multiple locations, adding distractors to any inter-keyframe similarity measure. We
carried out some preliminary experiments trying to model the foreground and background,
and explicitly segment out the foreground. However, experiments showed that even mask-
ing the foreground by hand (surprisingly) actually deteriated the performance. One possible
explanation is that masking out the people results in different areas of the background being
masked in different shots. On the other hand, giving extra weight in the texton histograms
to the borders of the image and reducing the impact of the center resulted in a small perfor-
mance improvement. Future work can almost certainly result in further improvements.
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