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Abstract. Histograms of visual words (or textons) have proved effective
in tasks such as image classification and object class recognition. A com-
mon approach is to represent an object class by a set of histograms, each
one corresponding to a training exemplar. Classification is then achieved
by k-nearest neighbour search over the exemplars.
In this paper we introduce two novelties on this approach: (i) we show
that new compact single histogram models estimated optimally from the
entire training set achieve an equal or superior classification accuracy.
The benefit of the single histograms is that they are much more efficient
both in terms of memory and computational resources; and (ii) we show
that bag of visual words histograms can provide an accurate pixel-wise
segmentation of an image into object class regions. In this manner the
compact models of visual object classes give simultaneous segmentation
and recognition of image regions.
The approach is evaluated on the MSRC database [5] and it is shown
that performance equals or is superior to previous publications on this
database.

1 Introduction

Segmenting natural images automatically in a bottom up fashion has a long
history but has not been that successful – see [16] for a recent example and earlier
references. Two more recent and fruitful trends are class driven segmentation,
where object class models propose object localisations that can then refine a
more local (bottom up) image segmentation [1, 2, 9, 11, 12, 17], and interactive
segmentation in which a human supplies approximate segmentations and then
refines and groups automatically generated image based segmentations [4, 15].
For example, consider a colour based segmentation of a patchy cow – a purely
bottom up segmentation will tend to separate the image into many different
regions rather than recognising the cow as a single, coherent object – there is a
clear need for segmentation and recognition to work together.

Many class driven recognition and segmentation algorithms represent the object
class or texture using multiple exemplars [1, 2, 9, 11, 12, 20]. One contribution of
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Fig. 1: The image database. (a–c) Example images from the MSRC database
and (a’–c’) their ground-truth class segmentation maps. The colour indicates the
object class, with different kinds of grass, for example, associated with a common
“grass” label. Note the presence of unlabelled (black) pixels.

this paper is to show that equal or superior recognition results can be obtained
by a single class model if an appropriate distance measure is used, and also to
explain why this result comes about. A second contribution of this paper is to
show that pixel-wise segmentations can be obtained from sliding windows using
class models.

In more detail we represent an object category by a single histogram of dense
visual words, and investigate the effectiveness of this representation for segmen-
tation. The advantage of a single class histogram is a very compact, and con-
sequently computationally efficient, representation. Histograms of visual words
have been used previously for region or image level classification [6, 8, 14, 18, 23],
though for the most part based on sparse descriptors. Others that have used
dense descriptors [3, 22, 8] have only considered soft segmentations based on the
support of the visual words, rather than explicit pixel-wise classification.

Previous authors [22] have also investigated representing each class in a compact
way using a single Gaussian model of each category. The class models explored
here are even simpler and more efficient since they consist of simple histograms
without a covariance. We compare the performance of our class models with
those of [22] using the same data sets.

For the experiments in this paper we use the MSRC image database [5] (see figure
1). The database contains many classes including grass, trees, sheep, buildings,
bicycles and others, seen from different viewpoints and under general illumina-
tion conditions. A coarse region level ground truth labelling is available, and this
is used to learn the class histograms, and also to assess the pixel level and region
level classifications during testing. For example, in the 120 training images there
are 64 labelled grass regions and 22 labelled cow regions.



Fig. 2: Flow diagram for the training and testing algorithms.

Fig. 3: Texton maps for the images of figure 1. Different colours uniquely
identify different textons/visual words. A small visual vocabulary with only 50
words has been used here for illustration.

2 Background: features, visual words and histograms

This section illustrates the basic algorithms for estimating the object class mod-
els and the intermediate data representation necessary for classification. The
training and testing steps have much in common and are briefly described next.

In this paper, feature vectors are estimated densely, i.e. at each pixel location.
The actual feature vectors (step S1 in figure 2) are raw 3 × 3 or 5 × 5 colour
patches [3, 20] in the CIE-LAB colour space. Thus, their dimensionality is 27 or
75, respectively.

During training a vocabulary of V visual words (also called textons, [13, 20,
21, 22]) is built by clustering the feature vectors extracted from many training
images (step S2). Feature clustering is performed by K-means on a randomly
sampled 25% subset of feature vectors using equal numbers from each training
image. Note, a suitable degree of invariance (to lighting, rotations, scale etc)
is learnt implicitly from the training images (since these provide examples of
lighting changes etc), and no additional invariances are built in.

Given the set of cluster centres (these are the visual words or textons), it is now
possible to associate each pixel in the training images with the closest visual



word in the vocabulary (step S3). The result may be visualised by generating
colour-coded word maps such as in figure 3.

Finally, we compute histograms of visual words for each of the training regions
(step S4). Those histograms can then be (i) stored separately as training exem-
plars, or (ii) combined together to produce compact and yet discriminative mod-
els of object categories. Here we estimate such single-histogram class models and
demonstrate classification accuracy comparable to standard k-nearest-neighbour
classification (k-NN) on the exemplars.

During testing (step S5), an input image is converted into its corresponding
texton map. Then, pixel-wise classification is obtained by means of a sliding
window technique. A window of dimension (2w + 1) × (2w + 1) is slid across
the image to generate a histogram of visual words for each position. The centre
pixel is then classified according to the closest class histogram. In this manner
an image can be segmented into the various classes it contains, for example into
pixels arising from grass, trees or sheep.

3 Single-histogram models for efficient classification

This section describes details of our class model estimation algorithm (step S4
in figure 2). During training the histograms corresponding to different training
regions (exemplars) belonging to the same class are combined together into a
single, optimally estimated class histogram. During testing for pixel-wise classi-
fication, a histogram is computed for each pixel of the test image using a sliding
window, and this histogram is then compared to each of the C (the number of
classes) class histograms (as opposed to each of the (possibly many) training
regions/exemplars in the case of k-NN classification). The use of single class his-
tograms clearly reduces the classification cost. The class models are used both
for the aforementioned pixel-wise classification, via a sliding window, and for
region level classification, explained later on.

The key question then is how to compute such single-histogram models. Let p
be one of the exemplar histograms and q the single histogram model that we
seek. Histograms are represented as V -vectors, with V the vocabulary size. For
a given class c, the “optimal” class histogram q is the one which minimises the
overall distance to all the Nc exemplar histograms pj , as this minimises intra-
class variability. Ideally, for best discrimination, one would also like to maximise
the inter-class variability, and we return to this point later. The optimal solu-
tion q̂ depends on the histogram distance function used during classification.
In this paper we analyse and compare the two most common alternatives: (i)
a Kullback-Leibler divergence (DKL), and (ii) a Euclidean distance (DL2). The
same framework may also be applied to other distance measures, such as his-
togram intersection, χ2, Bhattacharyya or Alpha-Divergence.



Kullback-Leibler divergence: The KL divergence between the two normalised
histograms a and b is defined as:

DKL(a ‖ b) =
∑

i

ai log
ai

bi
.

The subscript i labels the bins (ai or bi), with i = 1 . . . V .

Given a class c we seek the model histogram q̂ which minimises the following
cost:

EKL :=
Nc∑
j=1

njDKL(pj ‖ q) subject to ‖ q ‖1= 1, qi ≥ 0 ∀i , (1)

where nj denotes the number of pixels in the jth exemplar region, and is used
as a weight to each exemplar histogram. Nc is the number of exemplar regions
for the object category c. The normalised histogram for the jth exemplar image
region in class c is denoted pj . Note that the weighting factors nj could be set
to one, thus treating all training exemplars equally. Both versions were explored
and gave comparable results.

Standard manipulation yields the global minimum of (1) as:

q̂ :=

∑
j njpj∑

j nj
. (2)

It can be shown [7] that q̂, with nj as defined, corresponds to the maximum like-
lihood estimate of the visual word distribution for class c given its Nc training
region visual words. In other words, q̂ describes the overall visual word distri-
bution in all training regions.

During classification, given a query image sliding window, or region and its
corresponding histogram p, the closest class model q̃ = arg minq DKL(p ‖ q) is
chosen, i.e. q̃ is the model that best explains p and the corresponding class the
most likely one.

Euclidean Distance: The Euclidean distance between the two histograms a and
b is defined as:

DL2(a,b) =
∑
i=1

(ai − bi)2 .

Once again, given the class c and its exemplar histograms pj we seek the his-
togram q̂ which minimises the following cost:

EL2 :=
Nc∑
j=1

njDL2(pj ,q) subject to ‖ q ‖1= 1, qi ≥ 0 ∀i . (3)



Standard manipulation leads to the same q̂ as obtained by minimising (1), i.e.
as given in (2).

Next we assess the discrimination power of the learnt class models by measuring
pixel-wise classification performance.

4 Results and comparative evaluation

In this section we assess the validity of our models by measuring accuracy of
segmentation/recognition against two subsets of the MSRC database [5]: a six
class subset, 6-class = { cow, sheep, dog, cat, bird, grass }; and a nine class subset,
9-class = { building, grass, tree, cow, sky, aeroplane, face, car, bicycle } [22].

The databases are split into 125 training and 50 test images for the 6-class set,
and 120 training and 120 test images for the 9-class set. The visual vocabulary
and class models are learnt from the training data only. As mentioned before,
during testing a window of dimension (2w+1)× (2w+1) is slid across the image
to generate a histogram of visual words for each pixel, and thereby classifying
the centre pixel.

Accuracy of segmentation/recognition is measured by the proportion of test pix-
els correctly classified according to ground truth. Only the pixels belonging to
one of the aforementioned classes are taken into consideration. In the remainder
we refer to this accuracy as pixel-wise classification performance, as opposed
to region-wise classification performance which is introduced later. In the fol-
lowing we first evaluate performance using the 6-class set together with single
class histograms over the system parameters: features (3× 3, 5× 5); number of
iterations in K-means; vocabulary size V ; and window size w. We then compare
the performance of the single class histogram to that of using k-NN over all the
exemplars.

The effect of the window and vocabulary sizes: The first set of experiments are
designed to evaluate optimal values for the size of the sliding window w, the
vocabulary size V , and the best feature clustering technique.

Figure 4 plots the pixel-wise classification accuracy as a function of both the
window size w and the vocabulary size V . Two cross-sections of the accuracy
function through the maximum are shown in the table. The maximum perfor-
mance is reached for w = 11 − 15 and V = 16, 000. Accuracy does not vary
much over the range V = 8, 000 – 128, 000, so from here on a vocabulary of
size V = 8, 000 is used to reduce computational cost. The optimal value w = 12
is also used. The performance is found not to depend much on the size of the
feature (i.e. size of colour patch), 5× 5 colour patches are used from here on.
The effects of different clustering techniques: In table 1 we compare the influence
of different numbers of iterations in K-means clustering for the construction of
the visual vocabulary. Zero iterations denote randomly sampled cluster centres
from the feature space, which is how K-means is initialised in all cases. Inter-
estingly the performance is only slightly affected by the number of iterations.



V Acc. w Acc.

(w = 11) (%) (V = 8000) (%)

500 79.1 5 80.3

1000 80.7 11 82.4

2000 81.7 15 82.4

4000 82.3 20 82.1

8000 82.4 26 81.1

16000 83.0 30 80

Fig. 4: Accuracy analysis on the 6-class set. Pixel-wise classification per-
formance as a function of the size w of the sliding window and the size V of the
visual vocabulary. The features are 27-dimensional 3× 3 CIE-LAB patches. The
vocabulary is learnt by K-means clustering run for 500 iterations. KL divergence
is used for histogram comparisons.

KM, 0 iters KM, 1 iter KM, 10 iters KM, 500 iters

6-class 81.96± 0.20% (50) 82.24± 0.20% (10) 82.54± 0.15% (5) 82.56± 0.13% (5)

9-class 74.72± 0.22% (10) 74.92± 0.17% (10) 75.07± 0.15% (10) –

Table 1: Variations of K-means clustering. The mean (± one standard devi-
ation) pixel-wise classification accuracy computed over multiple runs of K-means;
with the number of runs used in each case shown in brackets. Different numbers
of iterations of K-means for constructing the visual vocabulary on the 6-class and
9-class sets are compared. KL divergence together with single class histograms
on 5× 5 patches was used.

In particular there is only a small gain in increasing from 10 to 500 iterations.
From here on we use 10 iterations as a trade off between performance and com-
putational time for the experiments.

Keeping all exemplar histograms vs. single-histogram class models: Next we com-
pare the performance of single-histogram models with respect to conventional
k-NN classification, and provide evidence for the main claim of the paper.

Table 2 summarises the results of applying a k-NN approach, i.e. maintaining all
the exemplar histograms of each class separately, and our single-histogram class
models. Classification performance is measured for both KL and L2 distance. In
all cases the accuracy obtained by the proposed class models is comparable (if
not superior) to that obtained by k-NN. Experiments were carried out for the
6-class and 9-class datasets, as shown (the optimal k in the k-NN was k = 1 for
KL divergence, and k = 3, 4 for L2; for the 9-class set only k = 1 was used).
Substituting L2 distance for KL divergence reduces the performance by nearly



DKL(6-class) DL2(6-class) Dχ2 (6-class) DKL(9-class) DL2(9-class) Dχ2 (9-class)

k-NN 82.1% 76.6% 78.7% 71.6% 65.1% 72.0%

single hist. 82.4% 77.0% – 75.2% 58.7% –

Table 2: k-NN vs. single-histograms. Comparing the pixel -wise classifica-
tion performance obtained by our single-histogram class models with that ob-
tained from conventional nearest neighbour. In this case we used V = 8000 and
5× 5 patches as features. K-means with 10 iterations was used to construct the
visual vocabulary. For the 6-class set the best performing k out of k = 1 . . . 100
and for the 9-class the performance for k-NN with k = 1 is reported. Using
single-histogram class models in conjunction with KL divergence produces the
best results.

GT\Cl grass cow sheep bird cat dog

grass 95.61 2.0 1.2 1.2 0.1

cow 3.8 71.9 6.4 1.0 5.4 11.5

sheep 3.2 12.0 62.7 4.3 4.9 13.0

bird 5.5 27.1 24.0 27.7 10.4 5.4

cat 5.5 12.4 6.9 69.8 5.5

dog 1.1 24.7 2.3 6.5 18.2 47.2

GT\Cl build. grass tree cow sky plane face car bike

build. 56.7 0.0 4.8 3.0 2.2 12.8 1.4 11.6 7.5

grass 0.5 84.8 9.7 3.9 1.2

tree 6.4 5.6 76.4 1.2 0.3 1.3 2.4 6.5

cow 1.9 2.4 2.7 83.8 0.2 4.5 3.7 0.8

sky 6.5 2.1 81.1 6.4 3.9

plane 16.8 0.8 5.0 3.4 0.1 53.8 16.6 3.5

face 4.6 0.0 0.4 19.1 0.6 68.5 3.6 3.2

car 7.4 1.1 3.4 0.7 2.6 2.0 71.4 11.6

bike 9.9 0.1 4.8 2.9 1.5 0.1 8.8 72.0

(a) conf. mat. for 6-class set (b) conf. mat. for 9-class set

Table 3: Confusion matrices for the single class histogram method (see table
2). (a) for the 6-class set; achieving an overall pixel-wise classification accuracy
of 82.4%. (b) for the 9-class set; achieving a pixel-wise classification accuracy
of 75.2%. KL divergence is used in both cases.

6%. This confirms the better suitability of the KL divergence for single class
histograms (see following discussion).

Table 3 shows the confusion matrices for selected experiments of table 2. The
matrices are row normalised (so that the percentages in each row sum to 100%).
Only pixels belonging to one of the classes are considered. For the 6-class set, the
grass class is recognised most reliably, followed by cows, cats and sheep. This
provides us with an idea of the relative difficulty of modelling each class. At
this point one may think that our models work well only with texture-defined
objects (grass, woolly sheep...). However, we also include classification of man
made (less texture-like) objects such as cars and bicycles in the 9-class database
(as also used in [22]). Table 3b presents the confusion matrix. The performance
is still well above 70%, thus confirming the modelling power of the proposed
class histograms (see following discussion).

4.1 Region level classification

Next we compare the accuracy of discrimination of our models with that achieved
by the Gaussian models proposed in Winn et al. [22]. Following their evalua-



1-NN (χ2) cl-Hist (KL) 1-NN ([22]) 1-NN T ([22])

9-class 92.34 (for V = 4000 and V =32000) 93.43 (V=64000) 93.4 92.7

Table 4: Region-wise classification. Comparing the region-wise classification
performance obtained by our single-histogram class models with that obtained
from conventional nearest neighbour. Shown are the best results if V is varied
(V is shown in brackets). Results are comparable to previous published perfor-
mances for this dataset [22].

tion methodology, we classify each input test region1 as belonging to one of the
classes in the database and measure the error with respect to ground truth. Table
4 shows that the proposed, simpler class models perform comparably. For this
comparison the exact training/test splits were provided by the authors of [22].
Each of the methods (k-NN using χ2 on exemplars, and KL for single-class his-
tograms) are optimised separately over the size of the vocabulary V , and the
best result is reported. χ2 is reported for k-NN as this gives superior results to
L2 and it is the standard distance measure for region classification on exem-
plars [20]. In both cases the features are 5×5 patches and the visual vocabulary
was constructed with K-means (10 iterations). In addition to the results given
in the table we experimented on the 6-class database using V = 8000. The re-
sult is similar in that the 1-NN χ2 performance was 79.5% and the single-class
histogram reached 85.5%.

4.2 Discussion

As the experiments demonstrate, KL divergence is superior to both L2 and χ2

distance when the single-histogram models are used ([19] uses KL for similar
reasons). This observation can be explained by the fact that the KL divergence
does not penalise zero bins in the query histogram (which are non-zero in the
model) as much as the other two distances. As a result of the way our class models
are learnt, they are likely to have many non-zero bins due to the contribution
of all training images’ visual words to the model histogram. Query histograms
that stem from a very specific object instance are very likely to have many zero
bins. Consider the three schematic histograms shown in figure 5a. If L2 (or χ2)
distances are used then each exemplar histogram will have a large distance from
the class histogram (due to bins qi of the mode in the class histogram which are
not present in each of the exemplars). However, the KL divergence ignores all
the null bins of the exemplar histograms (as these are zero pi values in pi log pi

qi
),

thus making it a better suited distance. Figure 5c provides an example of such
a multi-modal class histogram (here the cow model), and two exemplar regions
inducing modes in the class model. The table shows the actual distances of the
two cow regions to the three closest class models. In this case the bottom cow
would be classified incorrectly as dog if L2 was used.

The optimal estimation of a class histogram is related to the topic vectors of
Probabilistic Latent Semantic Analysis (pLSA) used in statistical text analy-
1 The area of the region and its ground truth label is known.
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KL 2.29 (cow) 1.65 (cow)

6.96 (dog) 3.75 (sheep)

11.66 (bird) 4.83 (dog)

L2 0.019 (cow) 0.0028 (dog)

0.202 (grass) 0.0032 (cat)

0.202 (sheep) 0.0034 (cow)
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Fig. 5: Advantages of KL. Different instances of cows induce different propor-
tions of visual words. A unified “cow” model histogram (c) will contain different
“modes” for the different visual aspects and species of the instances. (a) provides
a schematic visualisation. In (c) the mode corresponding to the top cow in (b)
is shown in red (left), and for the bottom cow in blue (right). The remaining
visual words of the cow -model are shown in black in the middle. Note that a
simple sorting of the visual words has been employed to bring out the different
modes. The table shows the distances of the cow exemplars in (b) to the class
models (showing the nearest class in bold). KL divergence ignores zero bins in
the query histograms and is thus better suited for this scenario (note the wrong
classification with L2 for the bottom cow).

sis [10]. Using the common terminology, each exemplar region represents a doc-
ument by its word frequencies, visual words in our case. In the pLSA “learning”
stage each exemplar is modelled by a topic distribution and each topic by a visual
word distribution. In our case we use the additional information provided by the
training data and hence define the topics to correspond to the object categories.
Furthermore, each exemplar is constrained to be modelled by one topic only –
the class assigned to it by the training annotation. Consequently, our method
directly corresponds to pLSA in that it also minimises the KL divergence of the
modelled data to the given data. The model is just more constrained in our case.

As mentioned earlier it would be desirable to maximise the inter-class distance
when building the single-histograms. Maximising the inter-class distance or gen-
erally merging the class histograms in a discriminative way is left for future
research. See [7] for related approaches.

Finally, figure 6 shows results of class segmentations of images. Note that the
(visual) accuracy of the L2 classification results is inferior to that obtained with
KL divergence.
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Fig. 6: Class segmentation results. (a) Original photographs. (b) Ground-
truth class labels. (c) Output class maps obtained with KL divergence. (d) Out-
put class maps obtained with L2 distance. In most cases L2 gives less accurate
segmentation. In all cases our single-histogram class models were used, together
with 5× 5 patch features, V = 8000 and K-means clustering.

5 Conclusion

This paper has introduced a new technique for the estimation of compact and
efficient, generative single-histogram models of object classes. The models are
applied to simultaneously segment and recognise images.

Despite their simplicity, our single-histogram class models have proved as dis-
criminative as keeping around all exemplar histograms (and classifying via near-
est neighbour approaches). The main advantage being their storage economy,
computational efficiency and scalability. Note, the computational efficiency is a
significant advantage since methods for speeding up nearest neighbour search,
such as k-D trees, do not perform well in high dimensions. Here the number of
dimensions equals the number of histogram bins and is of the order of thousands.
Thus, finding the closest exemplar (in k-NN classification) reduces to a linear
search through all the exemplars, whilst for single class histograms the search is
only linear in the number of classes.

Different histogram similarity functions have been compared. In the case of
single-histogram class models, the KL divergence has been demonstrated to
achieve higher accuracy than widely used alternatives such as L2 and χ2 dis-
tances.



The pixel labelling results demonstrate that our class histograms can also be
used to segment out objects. A natural next step is to combine such labellings
with a contrast dependent prior MRF in the manner of [4] in order to obtain crisp
segmentation boundaries. Alternatively the resulting pixelmaps can be used to
initialise graph-cuts methods automatically rather than manually as in [15].

In future work we will compare performance of the single class histograms against
other standard discriminative classifiers trained on the exemplars. For instance,
an SVM could be trained on sliding-window histograms for pixel-wise classifi-
cation or, as in the work of [17], weak classifiers can be built from histograms
of visual words within sliding rectangular regions, and then combined into a
discriminative classifier using boosting.



Bibliography
[1] E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In Proc.

ECCV, pages 109–124, 2002.
[2] E. Borenstein and S. Ullman. Learning to segment. ECCV, 2004.
[3] A. Bosch, A. Zisserman, and X. Munoz. Scene classification via pLSA. In Proc.

ECCV, 2006.
[4] Y. Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and

region segmentation of objects in N-D images. In Proc. ICCV, 2001.
[5] A. Criminisi. Microsoft research cambridge object recognition image database.

version 1.0, 2004. http://research.microsoft.com/vision/cambridge/recognition/.
[6] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of

keypoints. In Workshop on Stat. Learning in CV, ECCV, pages 1–22, 2004.
[7] I. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature

clustering algorithm for text classification. J. Machine Learning Research, 2003.
[8] L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene

categories. In Proc. CVPR, Jun 2005.
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