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Abstract Recognition of human poses and actions is

crucial for autonomous systems to interact smoothly

with people. However, cameras generally capture hu-

man poses in 2D as images and videos, which can have

significant appearance variations across viewpoints that

make the recognition tasks challenging. To address this,

we explore recognizing similarity in 3D human body

poses from 2D information, which has not been well-

studied in existing works. Here, we propose an approach
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to learning a compact view-invariant embedding space

from 2D body joint keypoints, without explicitly pre-

dicting 3D poses. Input ambiguities of 2D poses from

projection and occlusion are difficult to represent through

a deterministic mapping, and therefore we adopt a prob-

abilistic formulation for our embedding space. Experi-

mental results show that our embedding model achieves

higher accuracy when retrieving similar poses across

different camera views, in comparison with 3D pose

estimation models. We also show that by training a

simple temporal embedding model, we achieve supe-

rior performance on pose sequence retrieval and largely

reduce the embedding dimension from stacking frame-

based embeddings for efficient large-scale retrieval. Fur-

thermore, in order to enable our embeddings to work

with partially visible input, we further investigate dif-

ferent keypoint occlusion augmentation strategies dur-

ing training. We demonstrate that these occlusion aug-

mentations significantly improve retrieval performance

on partial 2D input poses. Results on action recognition

and video alignment demonstrate that using our em-

beddings without any additional training achieves com-

petitive performance relative to other models specifi-

cally trained for each task.

Keywords Human Pose Embedding · Probabilistic

Embedding · View-Invariant Pose Retrieval · Action

Retrieval · Occlusion Robustness

1 Introduction

Automated perception of human poses and activities

is an important step towards human-centric image and

video understanding, which is crucial for applications

such as autonomous vehicles [18], and social robotics [17].
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Fig. 1: We embed 2D poses such that our embeddings

are view-invariant (2D projections of similar 3D poses

are embedded close together) and probabilistic (embed-

dings are distributions that cover different 3D poses

projecting to the same input 2D pose).

In these applications, perception is often based on monoc-

ular cameras, which depict humans in two dimensions

(2D). However, when we represent three-dimensional

(3D) human poses in 2D, the same pose appears differ-

ent across camera views due to changing relative depth

of body parts and occlusions. These variations in 2D

representations across viewpoints present a challenge

for analyzing human behaviors from 2D data. To ad-

dress this challenge, we explore using learning-based

models to recognize similarity of 3D poses using 2D in-

puts.

We propose to learn view-invariant embeddings for

2D poses, which has not been well-explored in existing

works. Typically, embedding models are trained from

images using metric learning techniques [49,23,13]. How-

ever, images with similar human poses can appear dif-

ferent due to a variety of factors, such as viewpoints,
subjects, backgrounds, and clothing. As a result, it can

be difficult to understand errors in the embedding space

from a specific factor of variation. Furthermore, multi-

view image datasets for human poses are difficult to

capture in the wild with 3D groundtruth poses. Here,

we embed 2D pose keypoints to view-invariant embed-

dings as illustrated in Fig. 1. Our method leverages ex-

isting 2D keypoint detectors, similar to 2D-to-3D lift-

ing models [46,79]. Using 2D keypoints as inputs en-

ables our embedding model to focus on learning view-

invariant pose features, and training with datasets cap-

tured in lab environments, while generalizing to in-the-

wild data.

Another aspect of embedding models we aim to ad-

dress is occlusion-robustness. For models to be applied

in the wild, they need to be able to handle pose occlu-

sions that are widely present in natural images. This

ability to embed partial poses is also useful for searching

for poses through parts. One simple solution is to train

an individual embedding model for each possible occlu-

sion pattern. However, this is infeasible in practice due

to the large diversity of natural pose occlusions. Addi-

tionally, since these models are often trained using data

captured in lab settings, the diversity of occlusion pat-

terns for training is limited. In this paper, we propose

to learn a unified occlusion-robust embedding model

by synthesizing keypoint visibilities during training. We

explore different synthetic keypoint dropout strategies

to enable our model to be robust to common patterns

of missing keypoints in-the-wild.

We additionally explore embedding temporal pose

sequences, as temporal information is crucial for un-

derstanding human actions in videos. One simple solu-

tion is to stack frame-level embeddings, but this results

in high-dimensional embeddings that are prohibitive for

some real-world applications (e.g., large-scale retrieval).

On the other hand, learning to directly embed temporal

sequences can potentially reduce the embedding dimen-

sionality, and enables applications based on efficient se-

quence matching.

Finally, we study using probabilistic embeddings to

address the input ambiguity of 2D poses. Many valid

3D poses can be projected to the same or very similar

2D pose [2]. This input uncertainty is difficult to rep-

resent using deterministic mappings to the embedding

space (point embeddings) [51,33]. Instead, we adopt

probabilistic embeddings as multivariate Gaussian dis-

tributions and show that the learned variance from our

method correlates with input 2D ambiguities.

One direct application of our embeddings is pose-

based image retrieval. Our embeddings enable users to

search images by fine-grained fully or partially visible

pose, such as jumping with both hands up, running
with one hand waving, and many other actions that

are potentially difficult to predefine. The importance of

this application is further highlighted by works such

as [49,30]. Compared with using 3D keypoints with

alignment for retrieval, our pose embeddings enable ef-

ficient similarity comparisons in Euclidean space. Our

embeddings can also be applied to other tasks where

recognizing pose similarity across views is important.

Here, we demonstrate the performance using our em-

beddings on action recognition [78,27] and video align-

ment [16] downstream tasks.

Contributions We have developed a framework for map-

ping 2D poses to probabilistic embeddings where: (1)

2D pose embedding distances correspond to their simi-

larities in absolute 3D pose space; (2) probabilistic em-

beddings capture uncertainty; (3) a single model em-

beds different pose visibility patterns for handling par-

tial input. We evaluate our embeddings on cross-view
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pose retrieval, action recognition, and video alignment

tasks.

This work features several extensions to our previ-

ous conference publication [68], which focused on em-

bedding fully visible 2D poses from a single frame. First,

we extend our single-frame embedding framework to

handle sequential 2D inputs for cross-view sequence

matching. Second, we extend our framework to han-

dle partially visible 2D input, which allows our embed-

dings to be more applicable to in-the-wild data, and en-

ables users to define keypoint subsets for retrieval. We

achieve this using a visibility mask and random key-

point dropouts during training, and we investigate the

effect of different dropout strategies, including struc-

tured dropout that follows a prior distribution of real-

istic occlusions. Further, we develop a benchmark for

partial keypoint retrieval, for both natural occlusions

and targeted pose retrieval, where users can specify re-

trieval of partial matches to an input 2D pose. Finally,

we present a more extensive evaluation of our model

and baselines, including comparing to more 3D pose

estimation methods [79,37] on more datasets [45].

Our code is released at https://github.com/google-

research/google-research/tree/master/poem.

2 Related Work

We embed 2D human poses such that embedding space

distance corresponds to 3D pose similarity. In this sec-

tion, we review relevant literature on metric learning,

human pose estimation, and view invariance and object

retrieval.

Metric Learning We are working to understand simi-

larity in human poses across views. To capture mea-

sures of similarity between inputs, contrastive loss [5,

19,51,54,9] or triplet loss (based on tuple ranking) [73,

66,74,22] are commonly used. These losses are used to

push together examples that are similar in the embed-

ding space and pull apart examples that are dissimilar.

In visual representation and metric learning [51,54,9,

66], this similarity generally corresponds to categorical

image class labels. Our work is different in that our sim-

ilarity measure is based on continuous 3D pose distance

and we embed 2D pose keypoints, which allows us to

explore distinct approaches for pose representations.

In our work, we learn a mapping from Euclidean

distance in the embedding space to a probabilistic pose

similarity score. This probabilistic similarity captures

closeness in 3D pose space from 2D poses. Our work is

inspired by the mapping used in soft contrastive loss [51]

for learning from an occluded N-digit MNIST dataset.

During training of contrastive loss or triplet loss,

the number of possible training tuples increases expo-

nentially with respect to the number of samples in the

tuple, and not all combinations are equally informa-

tive. To find informative training tuples, various min-

ing strategies are proposed [66,75,52,22]. In particu-

lar, semi-hard triplet mining has been widely used [66,

75,57]. We measure the hardness of a negative sample

based on its embedding distance to the anchor. Com-

monly, this distance is the Euclidean distance [73,74,

66,22], but any differentiable distance function could

be applied [22]. In particular, [25,28] show that alter-

native distance metrics also work for image and object

retrieval. In our work, the distance metric is based on

a probabilistic 3D pose similarity score from embedded

2D poses.

Most of the papers discussed above involve deter-

ministically mapping inputs to point embeddings. We

map inputs to probabilistic embeddings, similar to works

such as [72,4,51]. Probabilistic embeddings have been

used to model specificity of word embeddings [72], un-

certainty in graph representations [4], and input uncer-

tainty due to occlusion [51]. We will apply probabilistic

embeddings to address inherent ambiguities in 2D pose

due to 3D-to-2D projection.

Human Pose Estimation 3D human pose estimation

from monocular 2D input, such as images or 2D poses,

is a widely explored area [46,7,58,61,81,69,62,70,8,63].

Instead of mapping 2D poses to 3D poses, our work

maps 2D poses to a view-invariant embedding space.

This embedding space enables detected 2D poses to be
matched across views and is directly applicable to pose

retrieval, action recognition, and video alignment.

Many approaches estimate 3D poses in the camera

coordinate system [46,7,58,61,81,69,62,70,8,40,77]. Since

the pose description changes based on camera view-

point, 3D poses in the camera coordinate frame is not

view-invariant, and cross-view retrieval requires rigid

alignment for every pose pair.

2D-to-3D lifting pose estimators [46,7,58,61,79] use

detected 2D poses as inputs, similar to our approach.

Some of these works [40,77] also use data augmentation

to improve generalization to new poses for 3D lifting.

Lifting models are trained to regress to 3D pose key-

points, while our model is trained using metric learn-

ing and outputs an embedding distribution. In addi-

tion, other works use multi-view datasets to predict 3D

poses in the global coordinate frame [59,37,29,63,71].

Our work differs from these methods with our goal of

learning view-invariant embeddings, approach of metric

learning, and downstream tasks.

https://github.com/google-research/google-research/tree/master/poem
https://github.com/google-research/google-research/tree/master/poem
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Retrieval,
Action Recognition,
Video Alignment,
...

Training Pipeline

Inference Pipeline

Fig. 2: Overview of Pr-VIPE model training and inference. Our model takes keypoint input from a single 2D pose

(detected from images and/or projected from 3D poses) and predicts embedding distributions. Three losses are

applied during training.

Although our approach focuses on learning pose em-

beddings, it is worth discussing 3D pose estimation

models that also take occlusion into account during

training, notably [65,12,11]. [65] applies occlusion aug-

mentation to images by randomly applying patches to

pose images. [12] uses 3D poses to estimate occlusion

patterns due to self-occlusion, by approximating a hu-

man body with cylinders. Finally, [11] applies random

and area-based occlusion patterns to detected keypoint

heatmaps. While we also experiment with random oc-

clusion dropout, we additionally compute a prior dis-

tribution of body occlusions from on a large amount of

random photos from the Internet. This enables us to

use realistic distributions to augment our model train-

ing. As a result, our model performs better on these

occlusion patterns.

View Invariance When we capture a 3D scene in 2D

as images or videos, changing the viewpoint often does

not change other properties of the scene. To the best

of our knowledge, we are the first to explore mapping

2D human poses to a view-invariant embedding space

via metric learning. View invariance from 2D informa-

tion can enable a variety of vision applications, such as

motion analysis [32,31,64], video alignment [16], track-

ing [53], vehicle and human re-identification [13,80], ob-

ject classification and retrieval [38,24,23], and action

recognition [60,42,76,39]. These downstream tasks can

potentially benefit from our view-invariant pose embed-

dings. Here, we investigate how view invariance can be

applied to cross-view retrieval, action recognition, and

video alignment.

Object Retrieval With growing amounts of recorded data,

retrieval has received increasing amounts of attention in

research communities [38,49,24,23,21]. The ability to

retrieve similar images and videos according to different

similarity metrics is useful for a variety of vision appli-

cations. Here, we would like to retrieve images contain-

ing similar 3D poses using 2D information. We show

that this ability also enables us to achieve cross-view

action recognition and video alignment.

Retrieval of 2D poses in the same view has been

studied in [49]. This method embeds images with simi-

lar 2D poses in the same view close together but is not

view-invariant. Our method focuses on learning view in-

variance, and we also differ from [49] in method, using

probabilistic 2D pose embeddings.

Compared to classification-based retrieval tasks, such

as [23], our domain differs in a few ways. Our targets

are continuous 3D poses, whereas in object recognition

and retrieval tasks, each embedding is associated with

a discrete class label. Furthermore, we embed 2D poses

instead of images. Our approach allows us to investigate

the impact of input 2D uncertainty with probabilistic

embeddings and explore different methods to measure

cross-view pose retrieval confidence. We hope that our

work provides a novel perspective on view invariance

for human poses.
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3 View-Invariant Probabilistic Pose Embedding

Our goal is to embed 2D poses such that distances in the

embedding space correspond to similarities of their cor-

responding absolute 3D poses in the Euclidean space.

We achieve this view-invariance property via training

with the triplet ratio loss (Section 3.2), which pulls to-

gether 2D poses corresponding to similar 3D poses and

pushes apart 2D poses corresponding to dissimilar 3D

poses. The positive pairwise loss (Section 3.3) is applied

to increase the matching probability of similar poses.

Finally, the Gaussian prior loss (Section 3.4) helps reg-

ularize embedding magnitude and variance. The train-

ing and inference framework of our model is illustrated

in Fig. 2.

3.1 Matching Definition

We define a measure of similarity so that we can pull

together 2D poses corresponding to similar 3D poses.

The 3D pose space is continuous, and two 3D poses can

be trivially different without being identical. To account

for this, we define two 3D poses to be matching if they

are visually similar regardless of viewpoint. Given two

sets of 3D pose keypoints (yi,yj), we define a matching

indicator function

mij =

{
1, if NP-MPJPE(yi,yj) 6 κ

0, otherwise,
(1)

where κ controls visual similarity between matching

poses. Here, we use the mean per joint position error

(MPJPE) [26] between the two sets of 3D pose key-

points as a proxy to quantify their visual similarity.

Before computing MPJPE, we normalize the 3D poses,

as described in Section 3.6, and apply Procrustes align-

ment between them. We do this in order for our model

to be view-invariant and to disregard rotation, trans-

lation, or scale differences between 3D poses. We refer

to this normalized, Procrustes-aligned MPJPE as NP-

MPJPE.

Fig. 3 demonstrates sampled 3D pose pairs with

different ranges of corresponding NP-MPJPE between

them. This plot shows the effect of choosing different

κ. Unless stated otherwise, our models use κ = 0.1,

which corresponds to using the first two rows as match-

ing pairs and the rest of the rows as non-matching. We

note that pairs in rows 3 and 4 shows significant visual

differences as compared with the first two rows. In gen-

eral, κ can be set by the user based on the perception

of visual similarity.

Fig. 3: 3D pose pairs with different NP-MPJPEs, where

the NP-MPJPEs increase with each row. The poses are

randomly sampled from the hold-out set of H3.6M. Row

1 shows pairs with 0 to 0.05 NP-MPJPEs, row 2 shows

pairs with 0.05 to 0.1 NP-MPJPEs, row 3 shows pairs

with 0.1 to 0.15 NP-MPJPEs, and row 4 shows pairs

with 0.15 to 0.2 NP-MPJPEs.

3.2 Triplet Ratio Loss

The triplet ratio loss aims to embed 2D poses based

on the matching indicator function (1). Let n be the

dimension of the input 2D pose keypoints x, and d be

the dimension of the output embedding. We would like

to learn a mapping f : Rn → Rd, such that:

D(zi, zj) < D(zi, zj′),∀mij > mij′ , (2)

where z = f(x), and D(zi, zj) is an embedding space

distance measure.

For a pair of input 2D poses (xi,xj), we define

p(m|xi,xj) to be the probability that their correspond-

ing 3D poses (yi,yj) match, that is, they are visually

similar. While it is difficult to define this probability

directly, we propose to assign its values by estimating

p(m|zi, zj) via metric learning. We know that if two 3D

poses are identical, then p(m|xi,xj) = 1, and if two 3D

poses are sufficiently different, p(m|xi,xj) should be

small. For any given input triplet (xi,xi+ ,xi−) with

mi,i+ > mi,i− , we want

p(m|zi, zi+)

p(m|zi, zi−)
> β, (3)

where β > 1 represents the ratio of the matching prob-

ability of a similar 3D pose pair to that of a dissimilar

pair. That is, the matching probability of a positive

pair should be larger than the matching probability of

a negative pair.

Applying negative logarithm to both sides, we have

(− log p(m|zi, zi+))− (− log p(m|zi, zi−)) 6 − log β.
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(4)

We note that the training can optimize this using the

triplet loss framework [66]. Given batch size N , we de-

fine the triplet ratio loss Lratio as

Lratio =

N∑
i=1

max(0, Dm(zi, zi+)−Dm(zi, zi−)+α), (5)

with distance kernel Dm(zi, zj) = − log p(m|zi, zj) and

margin α = log β. To form a triplet (xi,xi+ ,xi−), we

set the anchor xi and positive xi+ to be projected from

the same 3D pose and perform online semi-hard nega-

tive mining [66] to find xi− .

We can compute the matching probability using our

embeddings. To compute p(m|zi, zj), we use the formu-

lation proposed by [51]:

p(m|zi, zj) = σ(−a||zi − zj ||2 + b), (6)

where σ is a sigmoid function, and the trainable scalar

parameters a > 0 and b ∈ R calibrate embedding dis-

tance to probabilistic similarity.

3.3 Positive Pairwise Loss

Since the positive pairs in our triplets have identical

3D poses, we would like them to have high matching

probabilities. We encourage this property by adding the

positive pairwise loss

Lpositive =

N∑
i=1

− log p(m|zi, zi+). (7)

The combination of Lratio and Lpositive can be ap-

plied to training point embedding models, which we

refer to as VIPE.

3.4 Probabilistic Embeddings

In this section, we discuss the extension of VIPE to

the probabilistic formulation Pr-VIPE. The inputs to

our model, 2D pose keypoints, are inherently ambigu-

ous, and there are many valid 3D poses that can be

projected to a similar 2D pose [2]. This input uncer-

tainty can be difficult to model using point embed-

dings [33,51]. We investigate representing this uncer-

tainty using distributions in the embedding space by

mapping 2D poses to probabilistic embeddings: x →
p(z|x). Similar to [51], we extend the input match-

ing probability (6) to using probabilistic embeddings

as p(m|xi,xj) =
∫
p(m|zi, zj)p(zi|xi)p(zj |xj)dzidzj ,

which can be approximated using Monte-Carlo sam-

pling with K samples drawn from each distribution as

p(m|xi,xj) ≈
1

K2

K∑
k1=1

K∑
k2=1

p(m|z(k1)
i , z

(k2)
j ). (8)

We model p(z|x) with a d-dimensional Gaussian dis-

tribution with a diagonal covariance matrix. The model

estimates mean µ(x) ∈ Rd and covariance Σ(x) ∈
Rd with a shared base network and separate output

layers. During sampling, we use the reparameteriza-

tion trick [35], by first sampling from a unit Gaussian

ε(k) ∼ N (0, I) and then computing z(k) = µ(x) + ε(k) ·
diag(Σ(x)1/2) during training for easy backpropaga-

tion.

We place a unit Gaussian prior on our embeddings

with KL divergence by adding the Gaussian prior loss

Lprior =

N∑
i=1

DKL(N (µ(xi), Σ(xi)) ‖ N (0, I)). (9)

This loss prevents variance from collapsing to zero and

regularizes embedding mean magnitudes

3.5 Training

Our full training objective for Pr-VIPE is:

L = wratioLratio + wpositiveLpositive + wpriorLprior. (10)

We optimize training with respect to a and b in (6)

and the embedding function. We set the loss weights

such that all the terms have similar magnitude with

wratio = 1.

We adopt the backbone model architecture in [46]

with two residual fully-connected (FC) blocks, though

we note that other architectures may also work. More

implementation details can be found in Section 5.2.

3.6 Pose Normalization

We normalize our 2D and 3D poses such that camera

parameters are not needed during training and infer-

ence. For 3D poses, our normalization procedure is sim-

ilar to that in [8]. We translate a 3D pose so that the

pelvis located at the origin. We then scale the pelvis

to spine to neck distance to a unit scale. For 2D poses,

we translate the keypoints so that the center between

left and right hip is at the origin. Then we normal-

ize the pose such that the maximum distance between

shoulder and hip joints is 0.5. This maximum distance

is computed between all pairwise distances among left

shoulder, right shoulder, left hip, and right hip.
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3.7 Camera Augmentation

During training, input triplets consist of detected and/or

projected 2D keypoints as shown in Fig. 2. When we

train with detected 2D keypoints only, we are limited to

the camera views in training images. In order to adapt

our model to more views, we perform camera augmenta-

tion by generating triplets using 2D pose keypoints pro-

jected from 3D poses at random views. These triplets

are then mixed with the triplets from 2D detection for

training.

To form triplets using multi-view image pairs, we

use detected 2D keypoints from different views as anchor-

positive pairs. To use projected 2D keypoints, we per-

form two random rotations to a normalized input 3D

pose to generate two 2D poses from different views

for anchor-positive pairs. Camera augmentation is then

performed by using a mixture of detected and projected

2D keypoints.

3.8 Temporal Pose Embedding

For understanding actions, sequences of human poses

are usually required as they provide important tempo-

ral information. In this section, we further extend the

Pr-VIPE framework to temporal domain, namely Tem-

poral Pr-VIPE, to explicitly handle sequential inputs.

Instead of embedding a single 2D pose, we embed a 2D

pose sequence with the view-invariance and probabilis-

tic properties of Pr-VIPE.

The input to our Temporal Pr-VIPE is a sequence

of 2D poses from T temporally-ordered frames. Atrous

sampling is used with a rate based on the video frame

rate. We then apply the full Pr-VIPE objective (Sec-

tion 3.5) to train an embedding model for 2D pose se-

quences. To compare whether a pair of pose sequences

are similar, we compute the NP-MPJPEs of the 3D

poses between each of their corresponding frame pairs

and threshold on the maximum pairwise NP-MPJPE.

We also apply camera augmentation, similar to the Pr-

VIPE training, by applying a random camera view to a

subset of sequences within each batch during training.

We adopt a mid-fusion style network model archi-

tecture. Each 2D pose from the input sequence is fed

into a network with two residual FC blocks [46], and

the output features are concatenated and fed to a third

residual FC block followed by linear heads for final pre-

dictions, as shown in Fig. 4. More details on the imple-

mentation can be found in Section 5.2.

Residual 
FC Block 1

P
ose 1

Residual 
FC Block 2

Residual 
FC Block 1

P
ose 2

Residual 
FC Block 2

Residual 
FC Block 1

P
ose T

Residual 
FC Block 2

Residual 
FC Block 3

Linear 1
Linear 2

E
m

bedding 
m

ean
E

m
bedding 

variance

... ... ... ...

||

Fig. 4: Temporal Pr-VIPE model architecture. The

green circle represents vector concatenation.

3.9 Inference

At inference time, the Pr-VIPE model takes a single 2D

pose (either from detection or projection) and outputs

the mean and the variance of the embedding Gaussian

distribution. The Temporal Pr-VIPE model takes in T

context frames, and outputs the mean and the vari-

ance of the embedding Gaussian distribution. We do

not need explicit camera parameters for training or in-

ference.

4 Occlusion-Robust Pose Embedding

In this section, we extend the Pr-VIPE framework to

handle inputs with different keypoint visibilities by em-

bedding them into a single space using a single model.

We first present our keypoint visibility representation

for modeling in Section 4.1. We then study two key-

point occlusion augmentation strategies in Section 4.2:

independent keypoint dropout and structured keypoint

dropout. Finally, we describe training with keypoint oc-

clusions in Section 4.3.

4.1 Keypoint Visibility Representation

We use a binary mask vector v to represent the visibil-

ity of each keypoint for an input 2D pose x, where each

entry of v is 1 if its corresponding keypoint is visible

and 0 otherwise. This keypoint visibility indicator can

represent whether a keypoint is invisible due to occlu-

sion or being excluded. For example, keypoint masks

can be used for retrieval of partial pose matches. When

a keypoint has mask 0, its normalized coordinates are

also set to 0. We concatenate the keypoint mask with

normalized 2D keypoints as the model input.

In practice, we always consider the torso keypoints

(two shoulders and two hips) as visible, based on the

fact that torso has a near-rigid shape represented by



8 T. Liu, J.J. Sun et al.

these four keypoints, for which our 2D keypoint detec-

tor mostly gives reliable location estimates.

4.2 Keypoint Occlusion Augmentation

In order for our model to be robust to partially visible

input, we generate various keypoint occlusion patterns

during training. It is ideal to train our model with di-

verse realistic keypoint occlusion patterns, which, how-

ever, our dataset does not provide. We address this by

synthesizing occlusion patterns on fully visible poses

for training. Here, we explore two methods for creating

synthetic keypoint visibility masks:

Independent Keypoint Dropout One simple way to syn-

thesize keypoint occlusion patterns is to randomly mask

keypoints during training. We apply an i.i.d. sampling

with fixed chance q to determine whether each keypoint

of an input 2D pose is to be marked as invisible at each

training iteration.

Structured Keypoint Dropout In realistic photos, the

visibilities of pose keypoints are usually not i.i.d. A

more sophisticated way to synthesize “realistic” key-

point occlusion patterns is to consider the joint dis-

tribution of keypoint visibilities. We estimate 2D key-

points of about 300 million pose samples detected from

random in-the-wild photos. We binarize the keypoint

detection confidence via thresholding and use it as a

proxy to keypoint visibility. We then approximate the

joint distribution of keypoint visibility patterns in the

wild with its counting frequency.

The number of patterns in the joint distribution is

exponential to the number of keypoints. We decompose

the full body pose graph (See keypoint definitions in

Appendix A) into 6 cliques:

– Head: nose tip.

– Torso: left shoulder, right shoulder, left hip, right

hip.

– Left arm/torso: left wrist, left elbow, left shoulder,

left hip.

– Right arm/torso: right wrist, right elbow, right shoul-

der, right hip.

– Upper legs: left hip, right hip, left knee, right knee.

– Lower legs: left knee, right knee, left ankle, right

ankle.

We sample the visibility mask values for each clique fol-

lowing this order. When sampling for a clique, if some

of its keypoints have been assigned a visibility mask

value, then we marginalize them from the joint distri-

bution, and sample from the rest options. All of the

cliques have at most four keypoints, and thus marginal-

izing and sampling from their joint distributions can be

easily handled.

In practice during training, we first apply a thresh-

old to keypoint detection confidence and mask out key-

points with low confidence. Then we further sample the

keypoint mask values based on either strategies.

4.3 Training with Occlusions

Following the Pr-VIPE triplet training framework, we

generate keypoint visibility mask using the strategies

mentioned above for all anchor poses and use fully visi-

bility masks for their positive matches. Semi-hard neg-

ative matches are mined online from the batch and as-

signed full visibility masks. The negative labels are de-

termined according to the 3D pose matching definition

(Section 3.1) based on visible keypoints.

5 Experiments

In this section, we describe our experiment procedures

and present our model evaluations on three tasks: cross-

view retrieval, action recognition, and video alignment.

First, we show our model performance on pose retrieval

across different camera views for fully-visible poses (Sec-

tion 5.3), pose sequences (Section 5.4), and partially-

visible poses (Section 5.5). Second, we show that our

embeddings can be directly applied to action recogni-

tion (Section 5.6), without any additional training. Fi-

nally, we present the results of using our embeddings

for video alignment (Section 5.7).

5.1 Datasets

For all the experiments in this paper, we only train

on a subset of the Human3.6M [26] dataset. For pose

retrieval experiments, we validate on the Human3.6M

hold-out set and test on a different dataset MPI-INF-

3DHP [47], which is unseen during training and free

from parameter tuning. To evaluate models for handling

partially visible poses, we create a number of datasets

based on the Human3.6M hold-out set with syntheti-

cally occluded keypoints. Additionally, we use the 3D

Poses in the Wild dataset [45], which includes realistic

keypoint occlusions. We present qualitative results on

MPII Human Pose [3], for which 3D groundtruth is not

available. For action recognition and video alignment

experiments, we apply our model on Penn Action [78],

a video action dataset unseen during training.
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Human3.6M (H3.6M) [26] H3.6M is a large human pose

dataset recorded from 4 chest-level cameras at 50 frames

per second (FPS) with 3D pose groundtruth. We fol-

low the standard protocol [46]: train on Subject 1, 5,

6, 7, and 8, and hold out Subject 9 and 11 for val-

idation. For evaluation, we remove near-duplicate 3D

poses within 0.02 NP-MPJPE, resulting in a total of

10910 evaluation frames per camera. This process is

camera-consistent, meaning if a frame is selected un-

der one camera, it is selected under all cameras, so that

the perfect retrieval result is possible. For temporal em-

beddings, we use the same dataset split and evaluation

frames. In particular, we use 0.5-second clips centered

at the evaluation frames for the single-pose retrieval

experiments.

Note that H3.6M is the only dataset we use for train-

ing our models in this paper. The following datasets are

used only for testing and not for any training:

MPI-INF-3DHP (3DHP) [47] 3DHP is a more recent

human pose dataset that contains 14 diverse camera

views and scenarios, covering more pose variations than

H3.6M. We use 11 cameras from this dataset and ex-

clude the 3 cameras with overhead views. Similar to

H3.6M, we remove near-duplicate 3D poses, resulting in

6824 frames per camera. We use all 8 subjects from the

train split of 3DHP. For temporal embeddings, we use

0.5-second clips centered at these 6824 frames for the

single-pose retrieval experiments. We note that videos

from 3DHP are either 25 or 50 FPS.

3D Poses in the Wild (3DPW) [45] 3DPW contains 60

videos of human poses captured in the wild with re-

alistic occlusions. We use this dataset to evaluate our

occlusion-robust models and related baselines in terms

of pose retrieval. We split the test set originally pro-

posed in [45] by randomly selecting 45% of the video

sequences for query samples, and the rest for index

samples. We evenly downsample the video frames by

2, and only include a query sample if (1) its four 2D

torso keypoints (left shoulder, right shoulder, left hip,

right hip) are available, and (2) there exists at least one

sample in the index set whose 3D pose is less than 0.1

NP-MPJPE apart. Due to the randomness in splitting

query/index videos, we sample 5 splits and report the

averaged results for our experiments on this dataset.

MPII Human Pose (2DHP) [3] This dataset is com-

monly used for 2D pose estimation, containing about

25K in-the-wild images. Since groundtruth 3D poses

are not available, we only show qualitative results on

this dataset.

Penn Action [78] This dataset contains 2326 trimmed

videos for 15 pose-based actions taken from 4 differ-

ent views. We follow the standard protocol [50] for our

action classification and video alignment experiments.

5.2 Implementation Details

For single-frame models, the backbone network archi-

tecture for our model is based on [46] for simplicity and

fair comparison with 3D lifting. We use two residual FC

blocks, batch normalization, 0.3 dropout during train-

ing, and no weight norm clipping. Unless stated other-

wise, we use embedding dimension d = 16. To weigh

different losses, we use wratio = 1, wpositive = 0.005,

and wprior = 0.001. We choose β = 2 for the triplet ra-

tio loss margin and K = 20 for the number of samples.

During training, we normalize matching probabilities

to within [0.05, 0.95] for numerical stability. The match-

ing NP-MPJPE threshold is κ = 0.1 for all training and

evaluation. Ablation studies on hyperparameters can be

found in Section 5.9. For Temporal Pr-VIPE, we em-

bed 2D poses from T = 7 frames. The temporal atrous

sampling rate is chosen based on video frame rate, such

that the input sequence covers approximately 0.5 sec-

ond. Specifically, we use atrous rate 4 for 50 FPS videos

and 2 for 25 FPS videos.

We use PersonLab [55] 2D keypoint detector for

our experiments, unless stated otherwise, while our ap-

proach does not rely on a particular 2D keypoint detec-

tor. For random rotation during camera augmentation,

we uniformly sample azimuth angle between ±180◦, el-

evation angle between ±30◦, and roll angle between

±30◦. We use Adagrad optimizer [15] with fixed learn-

ing rate 0.02, and batch size N = 256. Our batch con-

sists of an even mix of detected and projected 2D key-

points, which includes anchor and positive pairs from

different sources. For the occlusion-robust model train-

ing, we evenly mix triplets with fully visible poses and

triplets with partially visible anchor poses in a batch.

Our implementation is in TensorFlow [1].

5.3 Cross-View Pose Retrieval

The goal of cross-view pose retrieval is to retrieve match-

ing 2D poses from different camera views given a 2D

pose from one view. This task is evaluated using multi-

view human pose datasets, since we have access to 2D

pose detections of the same 3D pose across views.

5.3.1 Evaluation Procedure

In this evaluation, we iterate through all camera pairs

in the dataset. For each camera pair, we query using de-
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Table 1: Comparison of cross-view pose retrieval results Hit@k (%) on H3.6M and 3DHP. ∗ indicates normalization

and Procrustes alignment are required to compare query-index pairs.

Dataset H3.6M 3DHP (Chest) 3DHP (All)
k 1 5 10 20 1 5 10 20 1 5 10 20

2D keypoints* 27.4 41.4 45.9 49.7 5.75 12.1 12.1 18.5 10.3 18.7 22.6 26.6
3D lifting* 68.8 85.4 89.5 92.5 26.0 47.1 55.9 63.8 25.5 45.9 54.6 62.7
L2-VIPE 73.2 90.4 94.3 96.9 25.0 48.2 58.4 68.1 19.5 38.6 47.9 57.4

L2-VIPE (w/ aug.) 72.4 89.2 93.2 95.9 29.1 52.7 62.4 71.3 27.2 49.9 59.1 68.1
Pr-VIPE 74.6 91.6 95.2 97.5 25.7 49.2 59.8 69.7 19.8 39.4 49.1 58.8

Pr-VIPE (w/ aug.) 72.9 90.0 93.9 96.5 29.0 53.1 63.0 72.0 27.3 50.0 59.9 69.0

Table 2: Comparison with recent methods of cross-view

pose retrieval results Hit@k (%) on H3.6M hold-out

subset. ∗ indicates normalization and Procrustes align-

ment are required to compare query-index pairs.

H3.6M
Model k = 1 k = 5 k = 10 k = 20

3D lifting* 68.2 85.5 90.0 93.5
SemGCN* 70.7 88.4 92.3 95.1

EpipolarPose* 78.0 92.2 95.2 97.1
Pr-VIPE (16D) 78.3 94.2 97.2 98.7
Pr-VIPE (32D) 81.6 95.5 97.9 99.1

tected 2D keypoints from the first camera view and find

the nearest neighbors in the embedding space from the

second, different, camera view. Results averaged across

all cameras pairs are reported.

We report Hit@k with k = 1, 5, 10, and 20 on pose

retrievals, which is the percentage of top-k retrieved

poses that have at least one accurate retrieval. A re-

trieval is considered accurate if the 3D groundtruth

from the retrieved pose satisfies the matching func-

tion (1) with κ = 0.1.

On H3.6M and 3DHP, we compare Pr-VIPE with

using 2D pose inputs, 2D-to-3D lifting models [46] and

L2-VIPE. L2-VIPE outputs L2-normalized point em-

beddings, and is trained with the squared L2 distance

kernel, similar to [66]. For fair comparison, we use the

same backbone network architecture for all the mod-

els. Notably, this architecture [46] has been tuned for

lifting tasks on H3.6M. Since the estimated 3D poses

in camera coordinates are not view-invariant, we apply

normalization and Procrustes alignment to align the

estimated 3D poses between index and query for re-

trieval. In comparison, our embeddings do not require

any alignment or other post-processing during retrieval.

On H3.6M, we further compare with two recent 3D

pose estimation methods: Semantic Graph Convolutional

Networks (SemGCN) [79] and EpipolarPose [37]. SemGCN

leverages graph convolutional networks [36] to encode

2D poses with a skeleton-based graph representation.

We train SemGCN on 2D poses from a Cascaded Pyra-

mid Network (CPN) [10] pose detector, which takes

bounding boxes detected by Mask R-CNN [20] as in-

puts. Following [58], the CPN model is pre-trained on

COCO [41] and then fine-tuned on H3.6M. Epipolar-

Pose is an image-based 3D pose estimation model. We

report the results from its fully supervised version.

For Pr-VIPE, we retrieve poses using nearest neigh-

bors in the embedding space with respect to the sam-

pled matching probability (8), which we refer to as re-

trieval confidence later in this paper.

5.3.2 Quantitative Results

Table 1 shows the comparison between Pr-VIPE and

baseline methods on the H3.6M hold-out set and 3DHP.

The H3.6M hold-out set has the same camera views as

the training set, and 3DHP has rich novel views and

poses unseen from the H3.6M training set. When we use

all cameras from 3DHP, we evaluate model generaliza-

tion to both novel poses and views. When we evaluate

using only the 5 chest-level cameras from 3DHP, the
views are more similar to the training set from H3.6M.

This enables us to focus more on evaluating model gen-

eralization to novel poses.

Without camera augmentation, Pr-VIPE is able to

generally perform better than the other baselines on

H3.6M and 3DHP (chest-level cameras). This obser-

vation indicates that Pr-VIPE is able to generalize as

well as other baseline methods to novel poses. Using

camera augmentation significantly improves the perfor-

mance of Pr-VIPE on 3DHP for both chest-level cam-

eras and all cameras. This observation indicates that

camera augmentation improves model generalization to

novel views. The same results can be observed for L2-

VIPE for chest-level and all cameras. We note that L2-

VIPE and Pr-VIPE has similar performance on 3DHP

with camera augmentation, while Pr-VIPE outperforms

L2-VIPE on H3.6M under this setting and performs

consistently better on both H3.6M and 3DHP without

camera augmentation. On H3.6M, camera augmenta-

tion slightly reduces accuracy for both Pr-VIPE and
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L2-VIPE, which is likely because it reduces overfitting

to the training camera views. In general, by performing

camera augmentation, which does not require camera

parameters or additional groundtruth information, Pr-

VIPE is able to generalize better to novel poses and

views.

Additionally, we note that 3D lifting models can

generalize relatively well to novel views with the help of

the additional Procrustes alignment, which requires ex-

pensive singular value decomposition computation be-

tween every index-query pair. We applied similar cam-

era augmentation to the lifting model, but did not see

improvements in performance. It is also worth mention-

ing that the first row in Table 1 shows retrieval accuracy

using aligned 2D pose keypoints. The poor retrieval per-

formance confirms the fact that models must learn view

invariance to perform well on this task.

Table 2 contains comparisons of Pr-VIPE to addi-

tional more recent 3D pose estimation baselines. For

this comparison, we follow the standard protocol used

in [37,79] and evaluate on every 64th frame of the H3.6M

hold-out set. Table 2 demonstrates that Pr-VIPE, with-

out the need for Procrustes alignment, is able to achieve

higher retrieval accuracy compared with 3D pose esti-

mation models. In addition, we are able to further im-

prove performance using higher dimensional Pr-VIPE,

without the need for additional training data.

5.3.3 Qualitative Results

Fig. 5 shows qualitative retrieval results using Pr-VIPE

(with camera augmentation). As shown in the first and

second rows, the retrieval confidences are generally high

for H3.6M. This indicates that the retrieved poses are

close to their queries in the embedding space. In the

third and fourth rows, the retrieval confidences are gen-

erally lower for 3DHP compared with H3.6M. This is

likely because there are novel poses and views unseen

during training, which results in the nearest neighbor

being slightly farther away in the embedding space. We

see that the model can generalize to novel views as the

3DHP images are taken at different camera elevations

from H3.6M.

We show qualitative results using queries from the

H3.6M hold-out set to retrieve from 2DHP in the last

three rows of Fig. 5. These results demonstrate that

as long as the 2D keypoint detections are reasonably

reliable, our model is able to retrieve poses across views

and subjects and works on in-the-wild images, despite

being trained only with in-lab data (H3.6M).

On the other hand, these examples also indicate our

model relies on the quality of 2D keypoint input as

a limitation to our approach. Errors in 2D keypoint

detection can lead to retrieval errors as shown by the

rightmost pair on row 4 (Fig. 5). This example has a

large retrieval error due to an erroneous right leg key-

point detection in the query pose. Additionally, projec-

tion ambiguity can also cause incorrect retrievals. In

the rightmost pair on row 7, the query pose has the left

arm in front of the body, and the retrieved pose has

the left arm in the back. This is likely caused by the

ambiguous appearance of the 2D pose skeleton without

image context.

5.4 Cross-View Pose Sequence Retrieval

In this section, we evaluate our Temporal Pr-VIPE mod-

els for cross-view pose sequence retrieval. Similar to

cross-view pose retrieval, this task targets evaluating

temporal embedding quality in terms of retrieving pose

sequences to match a query sequence from a different

camera view.

5.4.1 Evaluation Procedure

Given two pose sequences of the same length, we first

compute the NP-MPJPE between each corresponding

pose pair from both sequences. Then the maximum

of these pairwise NP-MPJPEs is defined as the NP-

MPJPE between the two sequences. We choose max-

imum here to reflect our requirement for the two se-

quences to be strictly close at all timestamps.

For each query sequence, we retrieve its k nearest

neighbor sequences from an index set based on their

embedding distances. Then the sequence NP-MPJPE

between each query and retrieval pair is thresholded

to determine whether each retrieval is a correct match.

Similar to the single-frame pose retrieval task, we eval-

uate on the H3.6M and the 3DHP dataset. We iterate

through all camera pairs in each dataset as query and

index, and report averaged results across all such cam-

era pairs.

We compare our Temporal Pr-VIPE result with base-

line methods that stack single-frame embeddings within

the same frame window into higher dimensional embed-

dings for retrieval distance computation. As we shall

show in Section 5.4.2, simple stacking is an effective

way of combining frame-level embeddings for sequence

retrieval. However, it comes with a major drawback of

high embedding dimensions, which can be prohibitive

for large-scale applications. In this experiment, we demon-

strate that with Temporal Pr-VIPE, we are able to

achieve competitive retrieval performance with a much

smaller embedding dimension.
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C = 0.993 E = 0.04 C = 0.968 E = 0.07 C = 0.714 E = 0.06

C = 0.836 E = 0.00 C = 0.949 E = 0.13 C = 0.926 E = 0.10

C = 0.969 E = 0.00 C = 0.961 E = 0.06 C = 0.606 E = 0.00

C = 0.828 E = 0.16 C = 0.946 E = 0.06 C = 0.889 E = 0.32

C = 0.729 C = 0.777 C = 0.737

C = 0.625 C = 0.636 C = 0.760

C = 0.839 C = 0.890 C = 0.944

Fig. 5: Visualization of pose retrieval results. The first and second row are from H3.6M; the third and fourth row

are from 3DHP; the last three rows are using queries from H3.6M to retrieve from 2DHP. On each row, we show the

query pose on the left for each image pair and the top-1 retrieval using Pr-VIPE (with camera augmentation) on

the right. We also show the retrieval confidences (“C”) and the top-1 NP-MPJPEs (“E”, if 3D pose groundtruth

is available).
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Table 3: Comparison of cross-view pose sequence retrieval results Hit@k (%) on H3.6M and 3DHP. All the models

in the table use camera augmentation.

Dataset
Total dim.

H3.6M 3DHP (Chest) 3DHP (All)
k 1 5 10 20 1 5 10 20 1 5 10 20

Pr-VIPE (stacking 8D) 56 70.3 85.4 89.8 93.1 41.9 60.6 67.8 74.7 38.9 56.9 64.3 71.3
Pr-VIPE (stacking 16D) 112 78.7 91.1 94.3 96.6 48.9 67.4 74.3 80.5 45.0 63.2 70.2 76.8
Pr-VIPE (stacking 32D) 224 80.8 92.8 95.8 97.7 50.4 69.3 76.2 82.4 47.0 65.4 72.4 78.9

Temporal Pr-VIPE (16D) 16 72.2 87.9 91.9 94.9 39.5 60.8 68.7 75.7 36.8 57.8 65.9 73.2
Temporal Pr-VIPE (32D) 32 80.0 92.1 95.0 97.1 49.2 69.1 75.7 81.3 46.7 66.4 73.3 79.3
Temporal Pr-VIPE (56D) 56 80.4 92.3 95.1 97.1 50.4 70.1 76.4 82.0 47.7 67.2 73.9 79.8

5.4.2 Quantitative Results

From Table 3, we see that using Temporal Pr-VIPE,

we are able to achieve competitive results with a much

lower embedding dimension. Specifically, our 32D tem-

poral Pr-VIPE outperforms stacking 7 8D single-frame

embeddings (total 56D) by a large margin. It also achieves

slightly better performance compared to stacking 7 16D

embeddings (total 112D), with fewer than one third of

the embedding dimensions. We observe a similar trend

across both H3.6M and 3DHP (unseen test set with new

poses and new views), suggesting that both models have

similar generalization abilities to new poses and new

views. When we vary the number of dimensions for tem-

poral Pr-VIPE, we note that at least 32D embeddings is

needed to achieve comparable performance to stacking

16D Pr-VIPE (total 112D), and at least 56D embed-

dings is needed to achieve comparable performance to

stacking 32D Pr-VIPE (total 224D). Additionally, we

note that when the output dimensions are comparable,

at total 56D, Temporal Pr-VIPE performs much better

than stacking 7 8D Pr-VIPE.

5.5 Partially-Visible Pose Retrieval

In this section, we evaluate our occlusion-robust em-

bedding for cross-view retrieval of partial 2D poses on

H3.6M and 3DPW. We use the outdoor 3DPW dataset

to test our embedding performance on realistic occlu-

sions. Since there are limited realistic occlusions in H3.6M,

we synthetically occlude certain keypoints and create

two types of test sets for evaluation, namely targeted

occlusion and real-distribution occlusion. The targeted

occlusion set consists of 10 hand-picked visibility pat-

terns and aims at testing model performance in targeted

partial pose search. The real-distribution occlusion con-

sists of the top-50 most common visibility patterns in

the wild and aims at testing models’ potential perfor-

mance on random photos in the wild. More details are

provided in Section 5.5.1. For all the experiments in

this section, we adopt the Pr-VIPE with camera aug-

mentation setting (Section 3), and apply different key-

point occlusion augmentation strategies during training

(Section 4.2).

5.5.1 Evaluation Procedure

Our evaluation procedure is similar to the full body

retrieval procedure above in Section 5.3.1. We report

retrieval performance with Hit@k with k = 1, 5, 10,

and 20, and a retrieval is considered accurate if the

retrieved 3D groundtruth pose satisfies the matching

function (1) with κ = 0.1 in terms of visible keypoints.

On H3.6M, we conduct two types of synthetic tests

for model performance with different keypoint visibility

patterns:

Targeted Occlusion We define 10 visibility patterns for

the targeted occlusions. These patterns are: missing left

or right or both arms, missing left or right or both legs,

and missing one arm and one leg. For each pattern,

we create a pair of query/index sets, such that all the

query samples have the designated visibility pattern,

while all the index samples always have full visibility.

We evaluate models on these 10 sets and report the

averaged results.

We compare the two proposed keypoint occlusion

augmentation training strategies, i.e., independent key-

point dropout and structured keypoint dropout, along

with two other baselines, one (“None”) that uses uni-

form (all-one) visibility masks and one (“Threshold-

ing”) that uses visibility masks only from threshold-

ing keypoint detection confidence during training. To

demonstrate the upper-bound performance for refer-

ence, we further train 10 models with fixed visibility

input, each dedicated to one of the 10 targeted occlu-

sion patterns. Each individual model is evaluated on its

dedicated visibility pattern.

Real-Distribution Occlusion We test model performance

with the top-50 most frequent visibility patterns from

the in-the-wild pose keypoint joint distribution intro-

duced in Section 4.2, which accumulatively covers about
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Table 4: Comparison of cross-view pose retrieval results Hit@k (%) on H3.6M with synthetic occlusions using

different keypoint occlusion augmentation training strategies. † indicates the results are from dedicated models that

are trained for each visibility pattern and evaluated with query/index samples with identical keypoint visibilities.

Evaluation type Keypoint dropout k = 1 k = 5 k = 10 k = 20

No occlusion

None 72.9 90.0 94.0 96.6
Thresholding 72.5 89.9 93.8 96.5
Independent 71.7 89.7 93.7 96.4
Structured 71.6 89.5 93.6 96.2

Targeted occlusion

None 2.52 5.71 7.51 10.5
Thresholding 17.0 32.9 41.5 51.2
Independent 66.2 87.3 92.1 95.3
Structured 66.5 87.3 92.0 95.2
Dedicated† 75.7 91.5 94.7 96.8

Real-distribution occlusion

None 46.6 63.5 69.6 75.1
Thresholding 58.4 80.4 86.6 91.3
Independent 70.3 89.2 93.5 96.2
Structured 71.0 89.5 93.6 96.2

Table 5: Comparison of cross-view pose retrieval results

Hit@k (%) on 3DPW with realistic occlusions using dif-

ferent keypoint occlusion augmentation training strate-

gies.

Keypoint dropout k = 1 k = 5 k = 10 k = 20

None 43.8 62.0 69.5 76.7
Thresholding 62.4 85.3 91.1 95.0
Independent 64.6 87.2 92.9 96.2
Structured 63.9 86.2 92.6 95.8

81% of the visibility patterns of the 300 million poses.

For each pattern, we create a pair of query/index sets,

such that all the query samples have the designated vis-

ibility pattern. For every index sample, we randomly

draw a visibility pattern from the joint distribution

whose visible keypoints make a superset of the query

visible keypoints. We evaluate models on these 50 sets

and report the average results weighted by the fre-

quency of each visibility pattern. It is also worth men-

tioning that only 5 of the 10 targeted occlusion patterns

are among the top-50 in-the-wild patterns.

We additionally experiment with 3DPW. 3DPW pro-

vides realistic occlusions on 2D keypoints, which we di-

rectly use for masking our model input. We also smear

these occlusions to 3D keypoints and only use visible

3D keypoints for NP-MPJPE computation during eval-

uation.

Using these datasets, we explore Pr-VIPE perfor-

mance with different keypoint occlusion augmentation

strategies described in Section 4.

5.5.2 Quantitative Results

Table 4 shows pose retrieval results on H3.6M synthetic

test sets. We see that when training without consider-

ing occlusions (“None”), the model performance is sig-

nificantly lowered when occlusions exist at test time,

compared to when no occlusions exist. Relying on lim-

ited realistic occlusions from the training set (“Thresh-

olding”) can boost models’ robustness to occlusions as

compared to without. The proposed independent or

the structured keypoint dropout strategy further pro-

vides significant performance improvement under differ-

ent occlusion scenarios, with only slightly lower perfor-

mance on fully visible retrieval. Similarly in Table 5, we

see that using our proposed keypoint dropout strategies

outperform baseline methods by a large margin. The re-

sults on the outdoor 3DPW dataset also suggest that

our occlusion-robust Pr-VIPE model works in the wild.

For targeted occlusions, the proposed one-for-all mod-

els using independent or structured keypoint dropout

achieve strong performance compared with the dedi-

cated model upper bounds on several retrieval metrics.

Though there is a performance difference between one-

for-all models and dedicated models, it is important to

note that each dedicated model is limited only to one

specific visibility pattern and not robust to other occlu-

sion patterns. In practice, it is infeasible to train and

deploy a model for every possible visibility pattern.

For targeted and real-distribution occlusions, we ob-

serve that using structured dropout outperforms inde-

pendent dropout (Table 4). From a modeling perspec-

tive, structured dropout is more flexible than indepen-

dent dropout at incorporating prior occlusion pattern

statistics into training, and thus has better performance

on similarly distributed test time patterns.
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Fig. 6: Comparison of cross-view pose retrieval results Hit@1 for the top-50 most common in-the-wild occlusion

patterns using different keypoint dropout methods with Pr-VIPE.

C = 0.727 E = 0.09 C = 0.621 E = 0.08 C = 0.866 E = 0.08

(Left arm) (Right arm) (Both arms)

C = 0.943 E = 0.06 C = 0.862 E = 0.06 C = 0.682 E = 0.08

(Left leg) (Right leg) (Both legs)

Fig. 7: Visualization of keypoint subset pose retrieval. For each pose pair, we show the query pose on the left

and the top-1 retrieval using the Pr-VIPE model (with camera augmentation and structured keypoint dropout)

on the right. The occluded body parts, synthesized with targeted occlusion patterns, are described under each

query images. Only visible keypoints are visualized with the skeletons. Retrieval confidences (“C”) and top-1 3D

NP-MPJPEs (“E”) are also displayed for each retrieval.

Fig. 6 further shows the retrieval results for each of

the top-50 most common in-the-wild visibility patterns.

We see that on the fully visible pose represented by the

first bar, all the dropout methods are similar in perfor-

mance. As we introduce different occlusion patterns, in-

dependent and structured dropout performs much bet-

ter than the other baselines. In conclusion, training with

keypoint occlusion augmentation is important to im-

proving model robustness to partial visibilities.

5.5.3 Qualitative Results

Fig. 7 shows qualitative retrieval results on 6 targeted

occlusion patterns using Pr-VIPE (with camera aug-

mentation) trained with structured keypoint dropout.

The queries are synthetically occluded. Specifically, queries

have left, right, and both arms occluded, respectively,

in the top row, and left, right, and both legs occluded,

respectively, in the bottom row. Using our embeddings,

we are able to accurately retrieve samples that share

similar poses in terms of the visible keypoints. For ex-

ample, in the bottom right pair (with query having both
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legs occluded), the top-1 retrieval has the same upper

body pose as the query, despite its significant difference

in the lower body pose. This evaluation also indicates

that using our occlusion-robust embedding, one will be

able to specify a subset of query keypoints for targeted

partial pose retrieval.

5.6 Action Recognition

Our pose embedding can be directly applied to pose-

based downstream tasks using simple algorithms. Here,

we compare the performance of Pr-VIPE (only trained

on H3.6M, with no additional training) on the

Penn Action dataset against other approaches specifi-

cally trained for action recognition on the target dataset.

5.6.1 Evaluation Procedure

To apply our frame embedding to videos, we compute

Pr-VIPEs on single video frames and use the negative

logarithm of the matching probability (8) as the dis-

tance between two frames. Using this per frame dis-

tance, we apply temporal averaging within an atrous

kernel of size 7 and rate 3 around the two center frames

and use this averaged distance as the frame matching

distance in a sequence. Given the matching distance,

we use the standard dynamic time warping (DTW)

algorithm to align two pose sequences by minimizing

the sum of frame matching distances. The averaged

frame matching distance from the DTW alignment of

Pr-VIPE matching distance is used as the distance be-

tween two video sequences.

For Temporal Pr-VIPE, our procedure is similar to

above, except we do not stack embeddings, as the model

directly embeds sequences. We compute sequence em-

beddings centered at each frame over the same tempo-

ral windows as above, and use DTW over sequence em-

bedding distances to align video pairs. The distance be-

tween two video sequences is computed based on DTW-

aligned sequences the same as above.

We evaluate our embeddings for action recognition

using nearest neighbor search with the sequence dis-

tance described above. Using all the testing videos as

queries, we conduct two experiments: (1) we use all

training videos as index to evaluate overall performance

and compare with state-of-the-art methods, and (2) we

use training videos only under one view as index and

evaluate the effectiveness of our embeddings in terms

of view invariance. For this second experiment, actions

with zero or only one sample under the index view are

ignored, and accuracy is averaged over different views.

We follow the standard evaluation protocol [50] and

remove action “strum guitar” and several videos in which

Table 6: Comparison of action recognition results on

Penn Action.

Methods
Input Accuracy

RGB Flow Pose (%)

Nie et al. [50] X X 85.5
Iqbal et al. [27] X 79.0
Cao et al. [6] X X 95.3

X X 98.1
Du et al. [14] X X X 97.4
Liu et al. [43] X X 91.4
Luvizon et al. [44] X X 98.7

Ours:
Pr-VIPE (stacking 8D) X 95.3
Pr-VIPE (stacking 16D) X 97.4
Pr-VIPE (stacking 32D) X 98.0
Temporal Pr-VIPE (32D) X 98.0
Temporal Pr-VIPE (56D) X 97.8

Ours (1-view index):
Pr-VIPE (stacking 8D) X 90.0
Pr-VIPE (stacking 16D) X 91.2
Pr-VIPE (stacking 32D) X 92.7
Temporal Pr-VIPE (32D) X 93.3
Temporal Pr-VIPE (56D) X 93.7

Table 7: Comparison of video alignment results on Penn

Action.

Methods Kendall’s Tau

SaL [48] 0.6336
TCN [67] 0.7353
TCC [16] 0.7328
TCC + SaL [16] 0.7286
TCC + TCN [16] 0.7672

Ours:
Pr-VIPE (stacking 8D) 0.7071
Pr-VIPE (stacking 16D) 0.7319
Pr-VIPE (stacking 32D) 0.7405
Temporal Pr-VIPE (32D) 0.7630
Temporal Pr-VIPE (56D) 0.7810

Ours (same-view only):
Pr-VIPE (stacking 8D) 0.7077
Pr-VIPE (stacking 16D) 0.7331
Pr-VIPE (stacking 32D) 0.7419
Temporal Pr-VIPE (32D) 0.7639
Temporal Pr-VIPE (56D) 0.7847

Ours (different-view only):
Pr-VIPE (stacking 8D) 0.7186
Pr-VIPE (stacking 16D) 0.7346
Pr-VIPE (stacking 32D) 0.7461
Temporal Pr-VIPE (32D) 0.7763
Temporal Pr-VIPE (56D) 0.7934

less than one third of the target person is visible. We

use the official train/test split and report the averaged

per-class accuracy. For the view-invariant action recog-

nition experiments in which the index set only contains

videos from a single view, we exclude the actions that

have zero or only one sample under a particular view.

We take the bounding boxes provided with the dataset
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Fig. 8: Video alignment results using Pr-VIPE. The orange dots correspond to the visualized frames, and the blue

line segments illustrate the frame alignment.

and use [56] (ResNet101) for 2D pose keypoint estima-

tion. For frames of which the bounding box is missing,

we copy the bounding box from a nearest frame. Fi-

nally, since our embedding is chiral, but certain actions

can be done with either body side (pitching a baseball

with left or right hand), when we compare two frames,

we extract our embeddings from both the original and

the mirrored version of each frame, and use the mini-

mum distance between all the pairwise combinations as

the frame distance.

5.6.2 Results

Table 6 demonstrates that our embeddings can achieve

competitive results on pose-based action classification

without any training of the Pr-VIPE model on the tar-

get domain or using image context information. Pr-

VIPE with nearest neighbor retrieval is able to out-

perform the existing best baseline that only uses pose

input, as well as other methods that has access to input

image context or optical flow. This result shows that our

embedding is applicable to pose-based action recogni-

tion without additional training, using the method de-

scribed in Section 5.6.1 for pose sequences.

In particular, we note that Temporal Pr-VIPE is

able to classify actions more accurately as compared

to stacking frame-level Pr-VIPE (Table 6). Stacking

frame-level embeddings also increases dimensionality of

the embeddings (for example, 7× 16 = 112D), whereas

temporal embeddings achieves higher classification ac-

curacy using only 32 dimensions.

To evaluate the view-invariance property of our em-

beddings, we perform action classification using only

training videos from a single view. The last section

in Table 6 further demonstrates the advantages of our

view-invariant embeddings, as they can be used to clas-

sify actions from different views using index samples

from only one single view with relatively high accuracy.

5.7 Video Alignment

The view-invariance property of Pr-VIPE can be lever-

aged to align videos with pose sequences across views.

We apply Pr-VIPE (only trained on H3.6M, with

no additional training) on the Penn Action dataset

against other approaches specifically trained for video

alignment on the target dataset.

5.7.1 Evaluation Procedure

Our embeddings can be used to align human action

videos from different views using DTW algorithm. Sim-

ilar to the temporal embedding stacking described in

Section 5.6.1, we apply temporal averaging of the nega-

tive logarithm of matching probability within an atrous

kernel of size 7 and rate 3 around each frame in a

pair of videos. This averaged distance is used as the

frame matching distance in a sequence and minimized
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using DTW to align two pose sequences. For tempo-

ral Pr-VIPE, we compute sequence embeddings on the

same frame windows, and the frame matching distance

is then computed between these sequence embeddings.

We follow [16] and measure the alignment quality of

our embeddings quantitatively using Kendall’s Tau [34],

which reflects how well an embedding model can be ap-

plied to align unseen sequences if we use nearest neigh-

bor in the embedding space to match frames for video

pairs. A value of 1 corresponds to perfect alignment. We

also test the view-invariant properties of our embed-

dings by evaluating Kendall’s Tau on aligning videos

pairs from the same view, and aligning pairs with dif-

ferent views.

We follow the protocol in [16], excluding “jump rope”

and “strum guitar” from our evaluation. For the evalu-

ations between videos under only the same or different

views, we exclude actions that have zero videos under

a particular view from the average Kendall’s Tau com-

putation. Since certain actions can be done with either

body side, for a video pair (v1, v2), we compute the

Kendall’s Taus between (v1, v2) and (v1,mirror(v2)),

and take the larger value.

5.7.2 Results

In Table 7, we compare our results with other video

embedding baselines that are trained for the alignment

task on Penn Action. Results show that all Pr-VIPE

methods outperform SaL, while Pr-VIPE (stacking 16D

and stacking 32D) performs comparable to all the method

that use a single type of loss. While Pr-VIPE tau is

lower than the combined TCC+TCN loss, our embed-

dings are able to achieve this without being explicitly

trained for this task or taking advantage of image con-

text. This demonstrates that Pr-VIPE is applicable to

aligning videos containing pose sequences.

Our experiments with Temporal Pr-VIPE show that

it performs better than stacking Pr-VIPE at alignment.

Additionally, 56D temporal Pr-VIPE is able to outper-

form all alignment baselines. We note that temporal

embeddings are able to achieve this with much lower

embedding dimension compared to stacking Pr-VIPE,

in particular 56D vs. stacking 32D (total 224D).

In the last two sections of Table 7, we show the

results from aligning video pairs only from the same

or different views. We can see that our embeddings

achieve consistent performance regardless of whether

the aligned video pairs are from the same or different

views, which demonstrate their view-invariance prop-

erty. In Fig. 8, we show visualization of synchronized

action video results from different views using stack-

ing 32D Pr-VIPE. More aligned videos are available at

Standing

Sitting

Arms 
Raised

Arms
Down

Fig. 9: Visualization of Pr-VIPE space with 2D poses

in the H3.6M hold-out subset using the first two PCA

dimensions. The dotted line shows the separation be-

tween sitting and standing poses.

https://drive.google.com/drive/folders/1nhPuEcX4Lhe6

iK3nv84cvSCov2eJ52Xy?usp=sharing.

5.8 Embedding Properties

5.8.1 Embedding Space Visualization

We visualize the Pr-VIPE space using Principal Com-

ponent Analysis (PCA). The first two principal dimen-

sions of the 16D Pr-VIPE is shown in Fig. 9. In order

to visualize unique poses, we randomly subsample the

H3.6M hold-out set and select 3D poses at least 0.1

NP-MPJPE apart. Fig. 9 demonstrates that 2D poses

from matching 3D poses are close together, while non-

matching poses are farther apart. Standing and sitting

poses appear to be well separated from the two prin-

cipal dimensions. Additionally, there are leaning poses

between sitting and standing. Poses near the bottom-

left corner of the figure have arms raised, and there is

generally a gradual transition to the top-right corner of

the figure, where arms are lowered. These results show

https://drive.google.com/drive/folders/1nhPuEcX4Lhe6iK3nv84cvSCov2eJ52Xy?usp=sharing
https://drive.google.com/drive/folders/1nhPuEcX4Lhe6iK3nv84cvSCov2eJ52Xy?usp=sharing
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Fig. 10: Retrieval Hit@1 (%) on H3.6M and 3DHP after

discarding samples with largest total variances in query

sets. The x-axis denotes the percentage of top sample

total variances in query sets.

Fig. 11: Relationship between embedding variance and

averaged 2D NP-MPJPE to top-10 nearest 2D pose

neighbors from the H3.6M hold-out subset. The me-

dian value is plotted as a line with the shaded regions

representing different percentile values. Best viewed in

color.

that from 2D joint keypoints only, we are able to learn

view-invariance properties with compact embeddings.

5.8.2 Effect of Variance

We first test the correlation between learned variances

and retrieval performance. We rank query poses by their

predicted total variance, and discard those with the

largest variances. We generally observe increases in re-

trieval accuracy as we filter out more poses based on

variance, as shown in Fig. 10.

Next, we study the relationship between learned

variance and input ambiguity in Fig. 11. This ambi-

guity is difficult to measure directly, and here we use a

heuristic, defined with respect to a dataset (the H3.6M

hold-out set). We compute the average 2D NP-MPJPE

between a 2D pose and its top-10 nearest neighbors in

terms of 2D NP-MPJPE. We ensure the 3D poses are

different by requiring poses from all camera views to

have a minimum gap of 0.1 3D NP-MPJPE. If a 2D

pose has smaller 2D NP-MPJPE to its closest neigh-

bors, it has more similar 2D poses corresponding to

different 3D poses, and thus this 2D pose is more am-

biguous. We note that this metric is a heuristic to ap-

proximate dataset-dependent 2D ambiguity. To declut-

ter the points in Fig. 11 for clarity, we further dedupli-

cate them by requiring any two samples have 3D NP-

MPJPE no less than 0.15. We observe that generally,

there is a decrease in the average 2D NP-MPJPE as the

learned variance increases when its value is small, which

indicates a negative correlation between the input am-

biguity and the variance. We note that this correlation

may not be exact, and the embedding uncertainty also

depends on other factors, such as model capacity and

training data.

Additionally, we sort all the 2D poses used in the

above paragraph by their total variance, and Fig. 12a

shows the 2D poses with the largest variances have more

similar 2D poses projected from different 3D poses. In

contrast, we see the top-retrieved 2D poses that cor-

respond to the smallest variance poses in Fig. 12b are

generally more different.

5.8.3 Retrieval Confidence

To study the correlation between retrieval confidence

and accuracy, we take all the queries along with their

top-5 retrievals (using Pr-VIPE retrieval confidence)

from each query-index camera pair from H3.6M and

3DHP, respectively, and bin each sample by their re-

trieval confidence. Then we compute average retrieval

accuracy in each bin. Fig. 13 shows the matching ac-

curacy for each confidence bin. We can see that the

accuracy positively correlates with the confidence val-

ues, which suggest our retrieval confidence is a valid

indicator to model performance.

5.9 Ablation Study

5.9.1 Embedding Dimensions

Fig. 14 demonstrates the effect of embedding dimen-

sions on retrieval accuracy on H3.6M and 3DHP. The

lifting model lifts 13 2D keypoints to 3D, and therefore

has a constant output dimension of 39. We see that Pr-

VIPE (with camera augmentation) is able to achieve

a higher accuracy than lifting at 16D on all datasets.

There is a further increase in accuracy as embedding
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Poses with top 5
largest variance

Closest Poses with respect to 2D NP-MPJPE

(a) Poses with top-5 largest variance and their nearest neighbors in terms of 2D NP-MPJPE.

Poses with top 5
smallest variance

Closest Poses with respect to 2D NP-MPJPE

(b) Poses with top-5 smallest variance and their nearest neighbors in terms of 2D NP-MPJPE.

Fig. 12: Top retrievals by 2D NP-MPJPE from H3.6M hold-out subset for queries with top-5 largest and smallest

variances. For each pose pair, the 3D pose is on the left and 2D poses are shown on the right in the boxes.

Fig. 13: Relationship between retrieval confidence and

accuracy using Pr-VIPE (with camera augmentation)

on H3.6M and 3DHP.

dimensions increase to 32D. For all our other experi-

ments, we use dimension 16.

5.9.2 What if 2D keypoint detectors were perfect?

We repeat our pose retrieval experiments using ground-

truth 2D keypoints to simulate a perfect 2D keypoint

detector on H3.6M and 3DHP. All experiments use the

Table 8: Comparison of cross-view pose retrieval results

Hit@1 (%) using 3D lifting and Pr-VIPE with detected

and groundtruth (GT) 2D keypoints on H3.6M and

3DHP.

Model Input type H3.6M 3DHP (chest) 3DHP (all)

3D lifting
Detected 68.8 26.0 25.5

GT 90.6 52.9 51.0

Pr-VIPE
Detected 74.6 25.7 19.8

GT 97.2 66.6 43.9

4 views from H3.6M for training following the evalua-

tion procedure in Section 5.3. Table 8 shows the results

for the baseline lifting model and Pr-VIPE. These re-

sults follow the same trend as using detected keypoints

inputs in Table 1. Comparing the results of detected

and groundtruth keypoints, the large improvement in

performance using groundtruth keypoints suggests that

a considerable fraction of error from our model is due

to imperfect 2D keypoint detections.
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Fig. 14: Comparison of retrieval Hit@1 with different embedding dimensions on H3.6M and 3DHP. The 3D lifting

baseline has output dimension 39.
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Fig. 15: Comparison of retrieval Hit@1 of 3D lifting and

Pr-VIPE (with camera augmentation) on H3.6M across

different camera query and index pairs.

5.9.3 Retrieval across different camera pairs

As described in Section 5.3, our retrieval results are av-

eraged over every camera query-index pair from differ-

ent views. We observe that for individual query-index

camera pairs, the performance is generally similar when

query and index cameras are swapped, such as for H3.6M

in Fig. 15. While there are variations in performance

across different camera pairs, we observe that for all

camera combinations, Pr-VIPE retrieves poses more ac-

curately compared to the 3D lifting baseline.

5.9.4 Effect of Sample Number K and Margin

Parameter β

Table 9 shows the effect of the number of samples K

and the margin parameter β (actual triplet ratio loss

margin α = log β) on Pr-VIPE. K controls how many

points we sample from the embedding distribution to

compute matching probability and β controls the ra-

tio of matching probability between matching and non-

matching pairs.

By varying β, our model performance varies slightly.

Table 9 shows that β = 2 and β = 3 has similar perfor-

Table 9: Comparison of cross-view pose retrieval results

Hit@k (%) using Pr-VIPE (with camera augmentation)

with different number of samples K and margin param-

eter β on H3.6M.

Hyperparameter Value k = 1 k = 5 k = 10 k = 20

K
10 72.6 89.7 93.7 96.4
20 72.9 90.0 93.9 96.5
30 72.9 90.1 94.1 96.6

β

1.25 72.1 89.9 93.8 96.5
1.5 72.5 90.0 93.9 96.6
2 72.9 90.0 93.9 96.5
3 72.8 89.7 93.8 96.4

mance. The main effect of β is on retrieval confidence

by controlling the scaling between matching and non-

matching pairs. With larger β, non-matching pairs are

scaled to a smaller matching probability.

In terms of the number of samples, Pr-VIPE per-

formance with 10 samples is competitive, but the per-

formance is slightly better with 20 samples. Increasing

the number of samples further has similar performance.

For our experiments, we use 20 samples and β = 2.

5.9.5 Effect of Camera Augmentation Parameters

We explore the effect of random rotation ranges for

camera augmentation on pose retrieval in Table 10.

With the same procedure as Section 5.3, all models are

trained on the 4 chest-level cameras in H3.6M, and the

models with camera augmentation additionally use pro-

jected 2D keypoints from randomly rotated 3D poses.

For random rotation, we always use azimuth range of

±180◦, and we evaluate a range of angle limits for ele-

vation and roll.

The model without camera augmentation does the

best on the H3.6M, which has the same 4 camera views

as training. With increase in rotation angles during
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Table 10: Comparison of cross-view pose retrieval re-

sults Hit@1 (%) using Pr-VIPE with different rota-

tion ranges for camera augmentation on H3.6M and

3DHP. The azimuth range is always ±180◦ and the an-

gle ranges in the table are for elevation and roll. The

row “w/o aug.” corresponds to Pr-VIPE without cam-

era augmentation.

Hyperparameter Range H3.6M 3DHP (Chest) 3DHP (All)

Elevation/Roll

w/o aug. 74.6 25.7 19.8
±15◦ 73.4 29.4 25.8
±30◦ 72.9 29.0 27.3
±45◦ 72.2 28.4 28.0

Table 11: Comparison of cross-view retrieval results

Hit@1 (%) using Pr-VIPE with different NP-MPJPE

threshold κ for training and evaluation on H3.6M.

Evaluation κ
Training κ 0.05 0.10 0.15 0.20

0.05 48.3 74.5 89.6 95.6
0.10 47.3 74.6 89.9 95.9
0.15 45.3 73.9 90.1 96.1
0.20 42.8 72.8 89.9 96.1

camera augmentation, the performance on chest-level

cameras drops while performance on new camera views

generally increases. Camera augmentation enables our

model to generalize much better to novel views, and we

use ±30◦ angle range for elevation and roll.

5.9.6 Effect of NP-MPJPE threshold κ

We train and evaluate different NP-MPJPE thresholds

κ in Table 11. κ determines the NP-MPJPE threshold

for a matching pose pair, and Fig. 3 provides a visual-

ization of different NP-MPJPE values.

Pr-VIPE generally achieves the best accuracy for a

given NP-MPJPE threshold when the model is trained

with the same matching threshold. Table 11 demon-

strates that when we train with a tight threshold, e.g.,

κ = 0.05, we do comparatively well at looser thresh-

olds. In contrast, when we train with a loose threshold,

e.g., κ = 0.2, we do not do as well given a tighter accu-

racy threshold at evaluation time. This is because when

we push non-matching poses using the triplet ratio loss,

κ = 0.2 does not explicitly push poses less than the NP-

MPJPE threshold. The closest retrieved pose will then

be within 0.2 NP-MPJPE but it is not guaranteed to

be within any threshold smaller than 0.2 NP-MPJPE.

For all our other experiments, we use κ = 0.1. For

future applications with other matching definitions, the

Pr-VIPE framework is flexible and can be trained with

Table 12: Comparison of cross-view pose retrieval re-

sults Hit@k (%) on H3.6M with targeted occlusions

using different training independent keypoint dropout

probability q.

Evaluation type q (%) k = 1 k = 5 k = 10 k = 20

No occlusion

5 72.5 89.7 93.8 96.5
10 72.0 89.7 93.7 96.4
20 71.7 89.7 93.7 96.4
30 71.2 89.3 93.5 96.2
40 70.1 88.9 93.3 96.1

Targeted occlusion

5 61.0 84.0 89.8 93.7
10 64.5 86.1 91.2 94.7
20 66.2 87.3 92.1 95.3
30 66.7 87.5 92.2 95.4
40 66.6 87.5 92.3 95.4

a different κ or other similarity measures to satisfy dif-

ferent accuracy requirements.

5.9.7 Independent Keypoint Dropout Probability

We vary the dropout probability q when training Pr-

VIPE (with camera augmentation) and evaluate its ef-

fect on H3.6M retrieval with fully and partially visible

poses. In Table 12, we see that as q increases, the model

performance generally improves on occluded poses but

degrades on fully visible poses. For our main experi-

ments, we choose q = 20%.

6 Conclusion

We present Pr-VIPE, a novel approach to learning view-

invariant, occlusion-robust probabilistic embeddings for

recognizing 3D human pose similarity using monocular

2D pose keypoints from either single images or video

sequences. Our models, only trained to match similar

3D poses, achieve highly competitive performance on

cross-view pose retrieval, action recognition, and video

alignment tasks against baseline models trained for each

task.

We further explore two synthetic occlusion augmen-

tation strategies when training Pr-VIPE to improve its

robustness to partially visible input. We show that our

augmentation strategies result in significant increases in

retrieval accuracy for partially visible poses. This capa-

bility of handling incomplete input enables the use of

our model for realistic photos, where pose occlusions are

common. It also makes it possible to devise systems for

targeted partial pose search using a single embedding

model.

Pr-VIPE has a simple architecture and can be po-

tentially applied to other domains, such as hand pose or

other generic object pose recognition. With this work,
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we hope to encourage further explorations into approach-

ing pose related problems from an embedding perspec-

tive, especially where recognizing 3D similarity is cen-

tral to the problem.
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A Keypoint Definition

Fig. 16 illustrates the keypoints that we use in our experi-
ments. The 16 keypoints we use to define a 3D pose are shown
in Fig. 16a. We map 3D keypoints from different datasets to
these 16 keypoints for training and evaluation in this paper.
Besides most unambiguous mappings, several special map-
pings that we would like to note here are:

– For the Human3.6M dataset [26], we discard the “Neck
/ Nose” keypoint and map the ”Thorax” keypoint to
“Neck”.

– For the MPI-INF-3DHP dataset [47], we discard the “Head
top” keypoint.

– For the 3DPW dataset [45], we add “Pelvis” keypoint as
the center of “Left hip” and “Right hip”, and add “Spine”
as the center of “Pelvis” and “Neck”.

The 13 2D keypoints we use to define a 2D pose are shown
in Fig. 16b. We follow the COCO [41] keypoint definition,
keeping all the 12 body keypoints and the “Nose” keypoint
on the head.

head

neck

left shoulder right shoulder

left elbow

left wrist

right elbow

right wrist

spine

pelvisleft hip

right hip

left knee
right knee

left ankle right ankle

(a) 16 3D keypoints.

nose tip

left shoulder right shoulder

left elbow
right elbow

left wrist
right wrist

left hip right hip

left knee

right knee

left ankle right ankle

(b) 13 2D keypoints.

Fig. 16: Definitions of pose keypoints.
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