
Rethinking Atrous Convolution for Semantic Image Segmentation

Liang-Chieh Chen George Papandreou Florian Schroff Hartwig Adam
Google Inc.

{lcchen, gpapan, fschroff, hadam}@google.com

Abstract

In this work, we revisit atrous convolution, a powerful tool
to explicitly adjust filter’s field-of-view as well as control the
resolution of feature responses computed by Deep Convolu-
tional Neural Networks, in the application of semantic image
segmentation. To handle the problem of segmenting objects
at multiple scales, we design modules which employ atrous
convolution in cascade or in parallel to capture multi-scale
context by adopting multiple atrous rates. Furthermore, we
propose to augment our previously proposed Atrous Spatial
Pyramid Pooling module, which probes convolutional fea-
tures at multiple scales, with image-level features encoding
global context and further boost performance. We also elab-
orate on implementation details and share our experience
on training our system. The proposed ‘DeepLabv3’ system
significantly improves over our previous DeepLab versions
without DenseCRF post-processing and attains comparable
performance with other state-of-art models on the PASCAL
VOC 2012 semantic image segmentation benchmark.

1. Introduction
For the task of semantic segmentation [20, 63, 14, 97, 7],

we consider two challenges in applying Deep Convolutional
Neural Networks (DCNNs) [50]. The first one is the reduced
feature resolution caused by consecutive pooling operations
or convolution striding, which allows DCNNs to learn in-
creasingly abstract feature representations. However, this
invariance to local image transformation may impede dense
prediction tasks, where detailed spatial information is de-
sired. To overcome this problem, we advocate the use of
atrous convolution [36, 26, 74, 66], which has been shown
to be effective for semantic image segmentation [10, 90, 11].
Atrous convolution, also known as dilated convolution, al-
lows us to repurpose ImageNet [72] pretrained networks
to extract denser feature maps by removing the downsam-
pling operations from the last few layers and upsampling
the corresponding filter kernels, equivalent to inserting holes
(‘trous’ in French) between filter weights. With atrous convo-
lution, one is able to control the resolution at which feature

rate = 6

rate = 24

rate = 1

Conv
kernel: 3x3

rate: 1

Conv
kernel: 3x3

rate: 6

Conv
kernel: 3x3
rate: 24

Feature map Feature mapFeature map

Figure 1. Atrous convolution with kernel size 3× 3 and different
rates. Standard convolution corresponds to atrous convolution
with rate = 1. Employing large value of atrous rate enlarges the
model’s field-of-view, enabling object encoding at multiple scales.

responses are computed within DCNNs without requiring
learning extra parameters.

Another difficulty comes from the existence of objects
at multiple scales. Several methods have been proposed to
handle the problem and we mainly consider four categories
in this work, as illustrated in Fig. 2. First, the DCNN is
applied to an image pyramid to extract features for each
scale input [22, 19, 69, 55, 12, 11] where objects at different
scales become prominent at different feature maps. Sec-
ond, the encoder-decoder structure [3, 71, 25, 54, 70, 68, 39]
exploits multi-scale features from the encoder part and re-
covers the spatial resolution from the decoder part. Third,
extra modules are cascaded on top of the original network for
capturing long range information. In particular, DenseCRF
[45] is employed to encode pixel-level pairwise similarities
[10, 96, 55, 73], while [59, 90] develop several extra convo-
lutional layers in cascade to gradually capture long range
context. Fourth, spatial pyramid pooling [11, 95] probes
an incoming feature map with filters or pooling operations
at multiple rates and multiple effective field-of-views, thus
capturing objects at multiple scales.

In this work, we revisit applying atrous convolution,
which allows us to effectively enlarge the field of view of
filters to incorporate multi-scale context, in the framework of
both cascaded modules and spatial pyramid pooling. In par-
ticular, our proposed module consists of atrous convolution
with various rates and batch normalization layers which we

1

ar
X

iv
:1

70
6.

05
58

7v
3 

 [
cs

.C
V

] 
 5

 D
ec

 2
01

7



Image Scale 1 Image Scale 2

Merge

Image

2x up

2x up

2x up

Image

Small Resolution

Atrous
Convolution

Image Image

Spatial Pyramid Pooling

(a) Image Pyramid (b) Encoder-Decoder (c) Deeper w. Atrous Convolution (d) Spatial Pyramid Pooling
Figure 2. Alternative architectures to capture multi-scale context.

found important to be trained as well. We experiment with
laying out the modules in cascade or in parallel (specifically,
Atrous Spatial Pyramid Pooling (ASPP) method [11]). We
discuss an important practical issue when applying a 3× 3
atrous convolution with an extremely large rate, which fails
to capture long range information due to image boundary
effects, effectively simply degenerating to 1 × 1 convolu-
tion, and propose to incorporate image-level features into
the ASPP module. Furthermore, we elaborate on imple-
mentation details and share experience on training the pro-
posed models, including a simple yet effective bootstrapping
method for handling rare and finely annotated objects. In the
end, our proposed model, ‘DeepLabv3’ improves over our
previous works [10, 11] and attains performance of 85.7%
on the PASCAL VOC 2012 test set without DenseCRF post-
processing.

2. Related Work
It has been shown that global features or contextual in-

teractions [33, 76, 43, 48, 27, 89] are beneficial in cor-
rectly classifying pixels for semantic segmentation. In
this work, we discuss four types of Fully Convolutional
Networks (FCNs) [74, 60] (see Fig. 2 for illustration)
that exploit context information for semantic segmentation
[30, 15, 62, 9, 96, 55, 65, 73, 87].

Image pyramid: The same model, typically with shared
weights, is applied to multi-scale inputs. Feature responses
from the small scale inputs encode the long-range context,
while the large scale inputs preserve the small object details.
Typical examples include Farabet et al. [22] who transform
the input image through a Laplacian pyramid, feed each
scale input to a DCNN and merge the feature maps from
all the scales. [19, 69] apply multi-scale inputs sequentially
from coarse-to-fine, while [55, 12, 11] directly resize the
input for several scales and fuse the features from all the
scales. The main drawback of this type of models is that it
does not scale well for larger/deeper DCNNs (e.g., networks
like [32, 91, 86]) due to limited GPU memory and thus it is
usually applied during the inference stage [16].

Encoder-decoder: This model consists of two parts: (a)

the encoder where the spatial dimension of feature maps
is gradually reduced and thus longer range information is
more easily captured in the deeper encoder output, and (b)
the decoder where object details and spatial dimension are
gradually recovered. For example, [60, 64] employ deconvo-
lution [92] to learn the upsampling of low resolution feature
responses. SegNet [3] reuses the pooling indices from the
encoder and learn extra convolutional layers to densify the
feature responses, while U-Net [71] adds skip connections
from the encoder features to the corresponding decoder acti-
vations, and [25] employs a Laplacian pyramid reconstruc-
tion network. More recently, RefineNet [54] and [70, 68, 39]
have demonstrated the effectiveness of models based on
encoder-decoder structure on several semantic segmentation
benchmarks. This type of model is also explored in the
context of object detection [56, 77].

Context module: This model contains extra modules
laid out in cascade to encode long-range context. One ef-
fective method is to incorporate DenseCRF [45] (with effi-
cient high-dimensional filtering algorithms [2]) to DCNNs
[10, 11]. Furthermore, [96, 55, 73] propose to jointly train
both the CRF and DCNN components, while [59, 90] em-
ploy several extra convolutional layers on top of the belief
maps of DCNNs (belief maps are the final DCNN feature
maps that contain output channels equal to the number of
predicted classes) to capture context information. Recently,
[41] proposes to learn a general and sparse high-dimensional
convolution (bilateral convolution), and [82, 8] combine
Gaussian Conditional Random Fields and DCNNs for se-
mantic segmentation.

Spatial pyramid pooling: This model employs spatial
pyramid pooling [28, 49] to capture context at several ranges.
The image-level features are exploited in ParseNet [58] for
global context information. DeepLabv2 [11] proposes atrous
spatial pyramid pooling (ASPP), where parallel atrous con-
volution layers with different rates capture multi-scale infor-
mation. Recently, Pyramid Scene Parsing Net (PSP) [95]
performs spatial pooling at several grid scales and demon-
strates outstanding performance on several semantic segmen-
tation benchmarks. There are other methods based on LSTM



[35] to aggregate global context [53, 6, 88]. Spatial pyramid
pooling has also been applied in object detection [31].

In this work, we mainly explore atrous convolution
[36, 26, 74, 66, 10, 90, 11] as a context module and tool
for spatial pyramid pooling. Our proposed framework is
general in the sense that it could be applied to any network.
To be concrete, we duplicate several copies of the original
last block in ResNet [32] and arrange them in cascade, and
also revisit the ASPP module [11] which contains several
atrous convolutions in parallel. Note that our cascaded mod-
ules are applied directly on the feature maps instead of belief
maps. For the proposed modules, we experimentally find it
important to train with batch normalization [38]. To further
capture global context, we propose to augment ASPP with
image-level features, similar to [58, 95].

Atrous convolution: Models based on atrous convolu-
tion have been actively explored for semantic segmentation.
For example, [85] experiments with the effect of modify-
ing atrous rates for capturing long-range information, [84]
adopts hybrid atrous rates within the last two blocks of
ResNet, while [18] further proposes to learn the deformable
convolution which samples the input features with learned
offset, generalizing atrous convolution. To further improve
the segmentation model accuracy, [83] exploits image cap-
tions, [40] utilizes video motion, and [44] incorporates depth
information. Besides, atrous convolution has been applied
to object detection by [66, 17, 37].

3. Methods
In this section, we review how atrous convolution is ap-

plied to extract dense features for semantic segmentation.
We then discuss the proposed modules with atrous convolu-
tion modules employed in cascade or in parallel.

3.1. Atrous Convolution for Dense Feature Extrac-
tion

Deep Convolutional Neural Networks (DCNNs) [50] de-
ployed in fully convolutional fashion [74, 60] have shown to
be effective for the task of semantic segmentation. However,
the repeated combination of max-pooling and striding at
consecutive layers of these networks significantly reduces
the spatial resolution of the resulting feature maps, typically
by a factor of 32 across each direction in recent DCNNs
[47, 78, 32]. Deconvolutional layers (or transposed convolu-
tion) [92, 60, 64, 3, 71, 68] have been employed to recover
the spatial resolution. Instead, we advocate the use of ‘atrous
convolution’, originally developed for the efficient computa-
tion of the undecimated wavelet transform in the “algorithme
à trous” scheme of [36] and used before in the DCNN context
by [26, 74, 66].

Consider two-dimensional signals, for each location i on
the output y and a filter w, atrous convolution is applied
over the input feature map x:

y[i] =
∑
k

x[i+ r · k]w[k] (1)

where the atrous rate r corresponds to the stride with which
we sample the input signal, which is equivalent to convolving
the input x with upsampled filters produced by inserting
r− 1 zeros between two consecutive filter values along each
spatial dimension (hence the name atrous convolution where
the French word trous means holes in English). Standard
convolution is a special case for rate r = 1, and atrous
convolution allows us to adaptively modify filter’s field-of-
view by changing the rate value. See Fig. 1 for illustration.

Atrous convolution also allows us to explicitly control
how densely to compute feature responses in fully convolu-
tional networks. Here, we denote by output stride the ratio
of input image spatial resolution to final output resolution.
For the DCNNs [47, 78, 32] deployed for the task of image
classification, the final feature responses (before fully con-
nected layers or global pooling) is 32 times smaller than the
input image dimension, and thus output stride = 32. If one
would like to double the spatial density of computed fea-
ture responses in the DCNNs (i.e., output stride = 16), the
stride of last pooling or convolutional layer that decreases
resolution is set to 1 to avoid signal decimation. Then, all
subsequent convolutional layers are replaced with atrous
convolutional layers having rate r = 2. This allows us to
extract denser feature responses without requiring learning
any extra parameters. Please refer to [11] for more details.

3.2. Going Deeper with Atrous Convolution

We first explore designing modules with atrous convolu-
tion laid out in cascade. To be concrete, we duplicate several
copies of the last ResNet block, denoted as block4 in Fig. 3,
and arrange them in cascade. There are three 3× 3 convolu-
tions in those blocks, and the last convolution contains stride
2 except the one in last block, similar to original ResNet.
The motivation behind this model is that the introduced strid-
ing makes it easy to capture long range information in the
deeper blocks. For example, the whole image feature could
be summarized in the last small resolution feature map, as
illustrated in Fig. 3 (a). However, we discover that the con-
secutive striding is harmful for semantic segmentation (see
Tab. 1 in Sec. 4) since detail information is decimated, and
thus we apply atrous convolution with rates determined by
the desired output stride value, as shown in Fig. 3 (b) where
output stride = 16.

In this proposed model, we experiment with cascaded
ResNet blocks up to block7 (i.e., extra block5, block6,
block7 as replicas of block4), which has output stride = 256
if no atrous convolution is applied.



Conv1
+

Pool1

Image 4

Block1

8

Block2

16

Block3

32

Block4

64

Block5

128

Block6

256

Block7

256
output
stride

(a) Going deeper without atrous convolution.

Conv1
+

Pool1

Image 4

Block1

8

Block2

16

Block3

16

Block4

16

Block5

16

Block6

16

Block7

16

rate=2 rate=4 rate=8 rate=16

output
stride

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when output stride = 16.
Figure 3. Cascaded modules without and with atrous convolution.

3.2.1 Multi-grid Method

Motivated by multi-grid methods which employ a hierar-
chy of grids of different sizes [4, 81, 5, 67] and following
[84, 18], we adopt different atrous rates within block4 to
block7 in the proposed model. In particular, we define as
Multi Grid = (r1, r2, r3) the unit rates for the three convo-
lutional layers within block4 to block7. The final atrous rate
for the convolutional layer is equal to the multiplication of
the unit rate and the corresponding rate. For example, when
output stride = 16 and Multi Grid = (1, 2, 4), the three
convolutions will have rates = 2 · (1, 2, 4) = (2, 4, 8) in
the block4, respectively.

3.3. Atrous Spatial Pyramid Pooling

We revisit the Atrous Spatial Pyramid Pooling proposed
in [11], where four parallel atrous convolutions with different
atrous rates are applied on top of the feature map. ASPP is
inspired by the success of spatial pyramid pooling [28, 49,
31] which showed that it is effective to resample features
at different scales for accurately and efficiently classifying
regions of an arbitrary scale. Different from [11], we include
batch normalization within ASPP.

ASPP with different atrous rates effectively captures
multi-scale information. However, we discover that as the
sampling rate becomes larger, the number of valid filter
weights (i.e., the weights that are applied to the valid fea-
ture region, instead of padded zeros) becomes smaller. This
effect is illustrated in Fig. 4 when applying a 3 × 3 filter
to a 65× 65 feature map with different atrous rates. In the
extreme case where the rate value is close to the feature map
size, the 3 × 3 filter, instead of capturing the whole image
context, degenerates to a simple 1× 1 filter since only the
center filter weight is effective.

To overcome this problem and incorporate global context
information to the model, we adopt image-level features,
similar to [58, 95]. Specifically, we apply global average

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 c

o
u
n
t

atrous rate

 

 

1 valid weight

4 valid weights

9 valid weights

Figure 4. Normalized counts of valid weights with a 3 × 3 filter
on a 65× 65 feature map as atrous rate varies. When atrous rate
is small, all the 9 filter weights are applied to most of the valid
region on feature map, while atrous rate gets larger, the 3× 3 filter
degenerates to a 1×1 filter since only the center weight is effective.

pooling on the last feature map of the model, feed the re-
sulting image-level features to a 1× 1 convolution with 256
filters (and batch normalization [38]), and then bilinearly
upsample the feature to the desired spatial dimension. In the
end, our improved ASPP consists of (a) one 1×1 convolution
and three 3× 3 convolutions with rates = (6, 12, 18) when
output stride = 16 (all with 256 filters and batch normaliza-
tion), and (b) the image-level features, as shown in Fig. 5.
Note that the rates are doubled when output stride = 8. The
resulting features from all the branches are then concate-
nated and pass through another 1× 1 convolution (also with
256 filters and batch normalization) before the final 1 × 1
convolution which generates the final logits.

4. Experimental Evaluation

We adapt the ImageNet-pretrained [72] ResNet [32] to
the semantic segmentation by applying atrous convolution
to extract dense features. Recall that output stride is defined
as the ratio of input image spatial resolution to final out-



Conv1
+

Pool1

Image 4

Block1

8

Block2

16

Block3

16

Block4

rate=2

output
stride

3x3 Conv
rate=6

3x3 Conv
rate=18 16

Concat
+

1x1 Conv

(a) Atrous Spatial
Pyramid Pooling

(b) Image Pooling

3x3 Conv
rate=12

1x1 Conv

Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.

put resolution. For example, when output stride = 8, the
last two blocks (block3 and block4 in our notation) in the
original ResNet contains atrous convolution with rate = 2
and rate = 4 respectively. Our implementation is built on
TensorFlow [1].

We evaluate the proposed models on the PASCAL VOC
2012 semantic segmentation benchmark [20] which con-
tains 20 foreground object classes and one background class.
The original dataset contains 1, 464 (train), 1, 449 (val), and
1, 456 (test) pixel-level labeled images for training, valida-
tion, and testing, respectively. The dataset is augmented by
the extra annotations provided by [29], resulting in 10, 582
(trainaug) training images. The performance is measured in
terms of pixel intersection-over-union (IOU) averaged across
the 21 classes.

4.1. Training Protocol

In this subsection, we discuss details of our training pro-
tocol.

Learning rate policy: Similar to [58, 11], we employ a
“poly” learning rate policy where the initial learning rate is
multiplied by (1− iter

max iter )
power with power = 0.9.

Crop size: Following the original training protocol [10,
11], patches are cropped from the image during training.
For atrous convolution with large rates to be effective, large
crop size is required; otherwise, the filter weights with large
atrous rate are mostly applied to the padded zero region. We
thus employ crop size to be 513 during both training and test
on PASCAL VOC 2012 dataset.

Batch normalization: Our added modules on top of
ResNet all include batch normalization parameters [38],
which we found important to be trained as well. Since large
batch size is required to train batch normalization parame-
ters, we employ output stride = 16 and compute the batch
normalization statistics with a batch size of 16. The batch
normalization parameters are trained with decay = 0.9997.
After training on the trainaug set with 30K iterations and ini-
tial learning rate = 0.007, we then freeze batch normalization
parameters, employ output stride = 8, and train on the offi-
cial PASCAL VOC 2012 trainval set for another 30K itera-
tions and smaller base learning rate = 0.001. Note that atrous

output stride 8 16 32 64 128 256

mIOU 75.18 73.88 70.06 59.99 42.34 20.29
Table 1. Going deeper with atrous convolution when employing
ResNet-50 with block7 and different output stride. Adopting
output stride = 8 leads to better performance at the cost of more
memory usage.

convolution allows us to control output stride value at dif-
ferent training stages without requiring learning extra model
parameters. Also note that training with output stride = 16
is several times faster than output stride = 8 since the inter-
mediate feature maps are spatially four times smaller, but
at a sacrifice of accuracy since output stride = 16 provides
coarser feature maps.

Upsampling logits: In our previous works [10, 11], the
target groundtruths are downsampled by 8 during training
when output stride = 8. We find it important to keep the
groundtruths intact and instead upsample the final logits,
since downsampling the groundtruths removes the fine anno-
tations resulting in no back-propagation of details.

Data augmentation: We apply data augmentation by
randomly scaling the input images (from 0.5 to 2.0) and
randomly left-right flipping during training.

4.2. Going Deeper with Atrous Convolution

We first experiment with building more blocks with atrous
convolution in cascade.

ResNet-50: In Tab. 1, we experiment with the effect of
output stride when employing ResNet-50 with block7 (i.e.,
extra block5, block6, and block7). As shown in the table, in
the case of output stride = 256 (i.e., no atrous convolution
at all), the performance is much worse than the others due
to the severe signal decimation. When output stride gets
larger and apply atrous convolution correspondingly, the
performance improves from 20.29% to 75.18%, showing that
atrous convolution is essential when building more blocks
cascadedly for semantic segmentation.

ResNet-50 vs. ResNet-101: We replace ResNet-50 with
deeper network ResNet-101 and change the number of cas-
caded blocks. As shown in Tab. 2, the performance improves



Network block4 block5 block6 block7

ResNet-50 64.81 72.14 74.29 73.88
ResNet-101 68.39 73.21 75.34 75.76

Table 2. Going deeper with atrous convolution when employ-
ing ResNet-50 and ResNet-101 with different number of cas-
caded blocks at output stride = 16. Network structures ‘block4’,
‘block5’, ‘block6’, and ‘block7’ add extra 0, 1, 2, 3 cascaded
modules respectively. The performance is generally improved by
adopting more cascaded blocks.

Multi-Grid block4 block5 block6 block7

(1, 1, 1) 68.39 73.21 75.34 75.76
(1, 2, 1) 70.23 75.67 76.09 76.66
(1, 2, 3) 73.14 75.78 75.96 76.11
(1, 2, 4) 73.45 75.74 75.85 76.02
(2, 2, 2) 71.45 74.30 74.70 74.62

Table 3. Employing multi-grid method for ResNet-101 with dif-
ferent number of cascaded blocks at output stride = 16. The best
model performance is shown in bold.

as more blocks are added, but the margin of improvement
becomes smaller. Noticeably, employing block7 to ResNet-
50 decreases slightly the performance while it still improves
the performance for ResNet-101.

Multi-grid: We apply the multi-grid method to ResNet-
101 with several cascadedly added blocks in Tab. 3. The unit
rates, Multi Grid = (r1, r2, r3), are applied to block4 and
all the other added blocks. As shown in the table, we observe
that (a) applying multi-grid method is generally better than
the vanilla version where (r1, r2, r3) = (1, 1, 1), (b) simply
doubling the unit rates (i.e., (r1, r2, r3) = (2, 2, 2)) is not
effective, and (c) going deeper with multi-grid improves the
performance. Our best model is the case where block7 and
(r1, r2, r3) = (1, 2, 1) are employed.

Inference strategy on val set: The proposed model is
trained with output stride = 16, and then during inference
we apply output stride = 8 to get more detailed feature
map. As shown in Tab. 4, interestingly, when evaluating
our best cascaded model with output stride = 8, the per-
formance improves over evaluating with output stride = 16
by 1.39%. The performance is further improved by per-
forming inference on multi-scale inputs (with scales =
{0.5, 0.75, 1.0, 1.25, 1.5, 1.75}) and also left-right flipped
images. In particular, we compute as the final result the
average probabilities from each scale and flipped images.

4.3. Atrous Spatial Pyramid Pooling

We then experiment with the Atrous Spatial Pyramid
Pooling (ASPP) module with the main differences from [11]
being that batch normalization parameters [38] are fine-tuned
and image-level features are included.

Method OS=16 OS=8 MS Flip mIOU

block7 + X 76.66
MG(1, 2, 1) X 78.05

X X 78.93
X X X 79.35

Table 4. Inference strategy on the val set. MG: Multi-grid. OS:
output stride. MS: Multi-scale inputs during test. Flip: Adding
left-right flipped inputs.

Multi-Grid ASPP Image
(1, 1, 1) (1, 2, 1) (1, 2, 4) (6, 12, 18) (6, 12, 18, 24) Pooling mIOU

X X 75.36
X X 75.93

X X 76.58
X X 76.46
X X X 77.21

Table 5. Atrous Spatial Pyramid Pooling with multi-grid method
and image-level features at output stride = 16.

Method OS=16 OS=8 MS Flip COCO mIOU

MG(1, 2, 4) + X 77.21
ASPP(6, 12, 18) + X 78.51

Image Pooling X X 79.45
X X X 79.77
X X X X 82.70

Table 6. Inference strategy on the val set: MG: Multi-grid. ASPP:
Atrous spatial pyramid pooling. OS: output stride. MS: Multi-
scale inputs during test. Flip: Adding left-right flipped inputs.
COCO: Model pretrained on MS-COCO.

ASPP: In Tab. 5, we experiment with the effect of in-
corporating multi-grid in block4 and image-level features
to the improved ASPP module. We first fix ASPP =
(6, 12, 18) (i.e., employ rates = (6, 12, 18) for the three
parallel 3 × 3 convolution branches), and vary the multi-
grid value. Employing Multi Grid = (1, 2, 1) is better
than Multi Grid = (1, 1, 1), while further improvement
is attained by adopting Multi Grid = (1, 2, 4) in the con-
text of ASPP = (6, 12, 18) (cf ., the ‘block4’ column in
Tab. 3). If we additionally employ another parallel branch
with rate = 24 for longer range context, the performance
drops slightly by 0.12%. On the other hand, augmenting the
ASPP module with image-level feature is effective, reaching
the final performance of 77.21%.

Inference strategy on val set: Similarly, we apply
output stride = 8 during inference once the model is trained.
As shown in Tab. 6, employing output stride = 8 brings
1.3% improvement over using output stride = 16, adopting
multi-scale inputs and adding left-right flipped images fur-
ther improve the performance by 0.94% and 0.32%, respec-
tively. The best model with ASPP attains the performance
of 79.77%, better than the best model with cascaded atrous
convolution modules (79.35%), and thus is selected as our
final model for test set evaluation.

Comparison with DeepLabv2: Both our best cascaded



model (in Tab. 4) and ASPP model (in Tab. 6) (in both
cases without DenseCRF post-processing or MS-COCO
pre-training) already outperform DeepLabv2 (77.69% with
DenseCRF and pretrained on MS-COCO in Tab. 4 of [11])
on the PASCAL VOC 2012 val set. The improvement mainly
comes from including and fine-tuning batch normalization
parameters [38] in the proposed models and having a better
way to encode multi-scale context.

Appendix: We show more experimental results, such as
the effect of hyper parameters and Cityscapes [14] results,
in the appendix.

Qualitative results: We provide qualitative visual results
of our best ASPP model in Fig. 6. As shown in the figure,
our model is able to segment objects very well without any
DenseCRF post-processing.

Failure mode: As shown in the bottom row of Fig. 6,
our model has difficulty in segmenting (a) sofa vs. chair, (b)
dining table and chair, and (c) rare view of objects.

Pretrained on COCO: For comparison with other state-
of-art models, we further pretrain our best ASPP model
on MS-COCO dataset [57]. From the MS-COCO train-
val minus minival set, we only select the images that have
annotation regions larger than 1000 pixels and contain the
classes defined in PASCAL VOC 2012, resulting in about
60K images for training. Besides, the MS-COCO classes
not defined in PASCAL VOC 2012 are all treated as back-
ground class. After pretraining on MS-COCO dataset, our
proposed model attains performance of 82.7% on val set
when using output stride = 8, multi-scale inputs and adding
left-right flipped images during inference. We adopt smaller
initial learning rate = 0.0001 and same training protocol as
in Sec. 4.1 when fine-tuning on PASCAL VOC 2012 dataset.

Test set result and an effective bootstrapping method:
We notice that PASCAL VOC 2012 dataset provides higher
quality of annotations than the augmented dataset [29], es-
pecially for the bicycle class. We thus further fine-tune our
model on the official PASCAL VOC 2012 trainval set be-
fore evaluating on the test set. Specifically, our model is
trained with output stride = 8 (so that annotation details are
kept) and the batch normalization parameters are frozen (see
Sec. 4.1 for details). Besides, instead of performing pixel
hard example mining as [85, 70], we resort to bootstrapping
on hard images. In particular, we duplicate the images that
contain hard classes (namely bicycle, chair, table, potted-
plant, and sofa) in the training set. As shown in Fig. 7, the
simple bootstrapping method is effective for segmenting the
bicycle class. In the end, our ‘DeepLabv3’ achieves the per-
formance of 85.7% on the test set without any DenseCRF
post-processing, as shown in Tab. 7.

Model pretrained on JFT-300M: Motivated by the re-
cent work of [79], we further employ the ResNet-101 model
which has been pretraind on both ImageNet and the JFT-
300M dataset [34, 13, 79], resulting in a performance of

Method mIOU

Adelaide VeryDeep FCN VOC [85] 79.1
LRR 4x ResNet-CRF [25] 79.3
DeepLabv2-CRF [11] 79.7
CentraleSupelec Deep G-CRF [8] 80.2
HikSeg COCO [80] 81.4
SegModel [75] 81.8
Deep Layer Cascade (LC) [52] 82.7
TuSimple [84] 83.1
Large Kernel Matters [68] 83.6
Multipath-RefineNet [54] 84.2
ResNet-38 MS COCO [86] 84.9
PSPNet [95] 85.4
IDW-CNN [83] 86.3
CASIA IVA SDN [23] 86.6
DIS [61] 86.8

DeepLabv3 85.7
DeepLabv3-JFT 86.9
Table 7. Performance on PASCAL VOC 2012 test set.

86.9% on PASCAL VOC 2012 test set.

5. Conclusion
Our proposed model “DeepLabv3” employs atrous con-

volution with upsampled filters to extract dense feature maps
and to capture long range context. Specifically, to encode
multi-scale information, our proposed cascaded module grad-
ually doubles the atrous rates while our proposed atrous spa-
tial pyramid pooling module augmented with image-level
features probes the features with filters at multiple sampling
rates and effective field-of-views. Our experimental results
show that the proposed model significantly improves over
previous DeepLab versions and achieves comparable perfor-
mance with other state-of-art models on the PASCAL VOC
2012 semantic image segmentation benchmark.

Acknowledgments We would like to acknowledge valu-
able discussions with Zbigniew Wojna, the help from Chen
Sun and Andrew Howard, and the support from Google
Mobile Vision team.

A. Effect of hyper-parameters
In this section, we follow the same training protocol as

in the main paper and experiment with the effect of some
hyper-parameters.

New training protocol: As mentioned in the main paper,
we change the training protocol in [10, 11] with three main
differences: (1) larger crop size, (2) upsampling logits during
training, and (3) fine-tuning batch normalization. Here, we
quantitatively measure the effect of the changes. As shown

http://host.robots.ox.ac.uk:8080/anonymous/EGZFFR.html
http://host.robots.ox.ac.uk:8080/anonymous/BDPJA4.html


Figure 6. Visualization results on the val set when employing our best ASPP model. The last row shows a failure mode.



(a) Image (b) G.T. (c) w/o bootstrapping (d) w/ bootstrapping

Figure 7. Bootstrapping on hard images improves segmentation
accuracy for rare and finely annotated classes such as bicycle.

in Tab. 8, DeepLabv3 attains the performance of 77.21%
on the PASCAL VOC 2012 val set [20] when adopting the
new training protocol setting as in the main paper. When
training DeepLabv3 without fine-tuning the batch normal-
ization, the performance drops to 75.95%. If we do not
upsample the logits during training (and instead downsam-
ple the groundtruths), the performance decreases to 76.01%.
Furthermore, if we employ smaller value of crop size (i.e.,
321 as in [10, 11]), the performance significantly decreases
to 67.22%, demonstrating that boundary effect resulted from
small crop size hurts the performance of DeepLabv3 which
employs large atrous rates in the Atrous Spatial Pyramid
Pooling (ASPP) module.

Varying batch size: Since it is important to train
DeepLabv3 with fine-tuning the batch normalization, we
further experiment with the effect of different batch sizes.
As shown in Tab. 9, employing small batch size is inefficient
to train the model, while using larger batch size leads to
better performance.

Output stride: The value of output stride determines
the output feature map resolution and in turn affects the
largest batch size we could use during training. In Tab. 10,
we quantitatively measure the effect of employing different
output stride values during both training and evaluation on
the PASCAL VOC 2012 val set. We first fix the evaluation
output stride = 16, vary the training output stride and fit
the largest possible batch size for all the settings (we are able
to fit batch size 6, 16, and 24 for training output stride equal
to 8, 16, and 32, respectively). As shown in the top rows of
Tab. 10, employing training output stride = 8 only attains
the performance of 74.45% because we could not fit large
batch size in this setting which degrades the performance
while fine-tuning the batch normalization parameters. When
employing training output stride = 32, we could fit large
batch size but we lose feature map details. On the other hand,
employing training output stride = 16 strikes the best trade-
off and leads to the best performance. In the bottom rows
of Tab. 10, we increase the evaluation output stride = 8.
All settings improve the performance except the one where
training output stride = 32. We hypothesize that we lose
too much feature map details during training, and thus the
model could not recover the details even when employing

Crop Size UL BN mIOU

513 X X 77.21
513 X 75.95
513 X 76.01
321 X 67.22

Table 8. Effect of hyper-parameters during training on PASCAL
VOC 2012 val set at output stride=16. UL: Upsampling Logits.
BN: Fine-tuning batch normalization.

batch size mIOU

4 64.43
8 75.76
12 76.49
16 77.21

Table 9. Effect of batch size on PASCAL VOC 2012 val set. We em-
ploy output stride=16 during both training and evaluation. Large
batch size is required while training the model with fine-tuning the
batch normalization parameters.

train output stride eval output stride mIOU

8 16 74.45
16 16 77.21
32 16 75.90

8 8 75.62
16 8 78.51
32 8 75.75

Table 10. Effect of output stride on PASCAL VOC 2012 val set.
Employing output stride=16 during training leads to better perfor-
mance for both eval output stride = 8 and 16.

output stride = 8 during evaluation.

B. Asynchronous training
In this section, we experiment DeepLabv3 with Tensor-

Flow asynchronous training [1]. We measure the effect of
training the model with multiple replicas on PASCAL VOC
2012 semantic segmentation dataset. Our baseline employs
simply one replica and requires training time 3.65 days with
a K80 GPU. As shown in Tab. 11, we found that the perfor-
mance of using multiple replicas does not drop compared
to the baseline. However, training time with 32 replicas is
significantly reduced to 2.74 hours.

C. DeepLabv3 on Cityscapes dataset
Cityscapes [14] is a large-scale dataset containing high

quality pixel-level annotations of 5000 images (2975, 500,
and 1525 for the training, validation, and test sets respec-
tively) and about 20000 coarsely annotated images. Follow-
ing the evaluation protocol [14], 19 semantic labels are used
for evaluation without considering the void label.



num replicas mIOU relative training time

1 77.21 1.00x
2 77.15 0.50x
4 76.79 0.25x
8 77.02 0.13x
16 77.18 0.06x
32 76.69 0.03x

Table 11. Evaluation performance on PASCAL VOC 2012 val set
when adopting asynchronous training.

OS=16 OS=8 MS Flip mIOU

X 77.23
X 77.82
X X 79.06
X X X 79.30

Table 12. DeepLabv3 on the Cityscapes val set when trained with
only train fine set. OS: output stride. MS: Multi-scale inputs
during inference. Flip: Adding left-right flipped inputs.

We first evaluate the proposed DeepLabv3 model on the
validation set when training with only 2975 images (i.e.,
train fine set). We adopt the same training protocol as before
except that we employ 90K training iterations, crop size
equal to 769, and running inference on the whole image,
instead of on the overlapped regions as in [11]. As shown
in Tab. 12, DeepLabv3 attains the performance of 77.23%
when evaluating at output stride = 16. Evaluating the model
at output stride = 8 improves the performance to 77.82%.
When we employ multi-scale inputs (we could fit scales =
{0.75, 1, 1.25} on a K40 GPU) and add left-right flipped
inputs, the model achieves 79.30%.

In order to compete with other state-of-art models, we
further train DeepLabv3 on the trainval coarse set (i.e.,
the 3475 finely annotated images and the extra 20000
coarsely annotated images). We adopt more scales and finer
output stride during inference. In particular, we perform in-
ference with scales = {0.75, 1, 1.25, 1.5, 1.75, 2} and eval-
uation output stride = 4 with CPUs, which contributes extra
0.8% and 0.1% respectively on the validation set compared
to using only three scales and output stride = 8. In the end,
as shown in Tab. 13, our proposed DeepLabv3 achieves the
performance of 81.3% on the test set. Some results on val
set are visualized in Fig. 8.

References
[1] M. Abadi, A. Agarwal, et al. Tensorflow: Large-scale

machine learning on heterogeneous distributed systems.
arXiv:1603.04467, 2016.

[2] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional
filtering using the permutohedral lattice. In Eurographics,
2010.

Method Coarse mIOU

DeepLabv2-CRF [11] 70.4
Deep Layer Cascade [52] 71.1
ML-CRNN [21] 71.2
Adelaide context [55] 71.6
FRRN [70] 71.8
LRR-4x [25] X 71.8
RefineNet [54] 73.6
FoveaNet [51] 74.1
Ladder DenseNet [46] 74.3
PEARL [42] 75.4
Global-Local-Refinement [93] 77.3
SAC multiple [94] 78.1
SegModel [75] X 79.2
TuSimple Coarse [84] X 80.1
Netwarp [24] X 80.5
ResNet-38 [86] X 80.6
PSPNet [95] X 81.2

DeepLabv3 X 81.3
Table 13. Performance on Cityscapes test set. Coarse: Use
train extra set (coarse annotations) as well. Only a few top models
with known references are listed in this table.

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation. arXiv:1511.00561, 2015.

[4] A. Brandt. Multi-level adaptive solutions to boundary-value
problems. Mathematics of computation, 31(138):333–390,
1977.

[5] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid
tutorial. SIAM, 2000.

[6] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene
labeling with lstm recurrent neural networks. In CVPR, 2015.

[7] H. Caesar, J. Uijlings, and V. Ferrari. COCO-Stuff: Thing
and stuff classes in context. arXiv:1612.03716, 2016.

[8] S. Chandra and I. Kokkinos. Fast, exact and multi-scale in-
ference for semantic image segmentation with deep Gaussian
CRFs. arXiv:1603.08358, 2016.

[9] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L.
Yuille. Semantic image segmentation with task-specific edge
detection using cnns and a discriminatively trained domain
transform. In CVPR, 2016.

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Semantic image segmentation with deep convolutional
nets and fully connected crfs. In ICLR, 2015.

[11] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. arXiv:1606.00915, 2016.

[12] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-
tention to scale: Scale-aware semantic image segmentation.
In CVPR, 2016.

[13] F. Chollet. Xception: Deep learning with depthwise separable
convolutions. arXiv:1610.02357, 2016.



Figure 8. Visualization results on Cityscapes val set when training with only train fine set.



[14] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding. In
CVPR, 2016.

[15] J. Dai, K. He, and J. Sun. Convolutional feature masking for
joint object and stuff segmentation. arXiv:1412.1283, 2014.

[16] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes
to supervise convolutional networks for semantic segmenta-
tion. In ICCV, 2015.

[17] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object
detection via region-based fully convolutional networks.
arXiv:1605.06409, 2016.

[18] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. arXiv:1703.06211,
2017.

[19] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolutional
architecture. arXiv:1411.4734, 2014.

[20] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I.
Williams, J. Winn, and A. Zisserma. The pascal visual object
classes challenge a retrospective. IJCV, 2014.

[21] H. Fan, X. Mei, D. Prokhorov, and H. Ling. Multi-level
contextual rnns with attention model for scene labeling.
arXiv:1607.02537, 2016.

[22] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. PAMI, 2013.

[23] J. Fu, J. Liu, Y. Wang, and H. Lu. Stacked deconvolutional
network for semantic segmentation. arXiv:1708.04943, 2017.

[24] R. Gadde, V. Jampani, and P. V. Gehler. Semantic video cnns
through representation warping. In ICCV, 2017.

[25] G. Ghiasi and C. C. Fowlkes. Laplacian reconstruction and
refinement for semantic segmentation. arXiv:1605.02264,
2016.

[26] A. Giusti, D. Ciresan, J. Masci, L. Gambardella, and
J. Schmidhuber. Fast image scanning with deep max-pooling
convolutional neural networks. In ICIP, 2013.

[27] S. Gould, R. Fulton, and D. Koller. Decomposing a scene
into geometric and semantically consistent regions. In ICCV.
IEEE, 2009.

[28] K. Grauman and T. Darrell. The pyramid match kernel: Dis-
criminative classification with sets of image features. In ICCV,
2005.

[29] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.
Semantic contours from inverse detectors. In ICCV, 2011.

[30] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localization.
In CVPR, 2015.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In
ECCV, 2014.

[32] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv:1512.03385, 2015.

[33] X. He, R. S. Zemel, and M. Carreira-Perpindn. Multiscale
conditional random fields for image labeling. In CVPR, 2004.

[34] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. In NIPS, 2014.

[35] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[36] M. Holschneider, R. Kronland-Martinet, J. Morlet, and
P. Tchamitchian. A real-time algorithm for signal analysis
with the help of the wavelet transform. In Wavelets: Time-
Frequency Methods and Phase Space, pages 289–297. 1989.

[37] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy.
Speed/accuracy trade-offs for modern convolutional object
detectors. In CVPR, 2017.

[38] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167, 2015.

[39] M. A. Islam, M. Rochan, N. D. Bruce, and Y. Wang. Gated
feedback refinement network for dense image labeling. In
CVPR, 2017.

[40] S. D. Jain, B. Xiong, and K. Grauman. Fusionseg: Learn-
ing to combine motion and appearance for fully automatic
segmention of generic objects in videos. In CVPR, 2017.

[41] V. Jampani, M. Kiefel, and P. V. Gehler. Learning sparse high
dimensional filters: Image filtering, dense crfs and bilateral
neural networks. In CVPR, 2016.

[42] X. Jin, X. Li, H. Xiao, X. Shen, Z. Lin, J. Yang, Y. Chen,
J. Dong, L. Liu, Z. Jie, J. Feng, and S. Yan. Video scene
parsing with predictive feature learning. In ICCV, 2017.

[43] P. Kohli, P. H. Torr, et al. Robust higher order potentials for
enforcing label consistency. IJCV, 82(3):302–324, 2009.

[44] S. Kong and C. Fowlkes. Recurrent scene parsing with per-
spective understanding in the loop. arXiv:1705.07238, 2017.

[45] P. Krähenbühl and V. Koltun. Efficient inference in fully
connected crfs with gaussian edge potentials. In NIPS, 2011.

[46] I. Krešo, S. Šegvić, and J. Krapac. Ladder-style densenets
for semantic segmentation of large natural images. In ICCV
CVRSUAD workshop, 2017.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[48] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Associative
hierarchical crfs for object class image segmentation. In
ICCV, 2009.

[49] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene
categories. In CVPR, 2006.

[50] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural computa-
tion, 1(4):541–551, 1989.

[51] X. Li, Z. Jie, W. Wang, C. Liu, J. Yang, X. Shen, Z. Lin,
Q. Chen, S. Yan, and J. Feng. Foveanet: Perspective-aware
urban scene parsing. arXiv:1708.02421, 2017.

[52] X. Li, Z. Liu, P. Luo, C. C. Loy, and X. Tang. Not all pixels
are equal: Difficulty-aware semantic segmentation via deep
layer cascade. arXiv:1704.01344, 2017.

[53] X. Liang, X. Shen, D. Xiang, J. Feng, L. Lin, and S. Yan.
Semantic object parsing with local-global long short-term
memory. arXiv:1511.04510, 2015.



[54] G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet: Multi-
path refinement networks with identity mappings for high-
resolution semantic segmentation. arXiv:1611.06612, 2016.

[55] G. Lin, C. Shen, I. Reid, et al. Efficient piecewise train-
ing of deep structured models for semantic segmentation.
arXiv:1504.01013, 2015.

[56] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
arXiv:1612.03144, 2016.

[57] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV, 2014.

[58] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking
wider to see better. arXiv:1506.04579, 2015.

[59] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image
segmentation via deep parsing network. In ICCV, 2015.

[60] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[61] P. Luo, G. Wang, L. Lin, and X. Wang. Deep dual learning
for semantic image segmentation. In ICCV, 2017.

[62] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feed-
forward semantic segmentation with zoom-out features. In
CVPR, 2015.

[63] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler,
R. Urtasun, and A. Yuille. The role of context for object
detection and semantic segmentation in the wild. In CVPR,
2014.

[64] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In ICCV, 2015.

[65] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille.
Weakly- and semi-supervised learning of a dcnn for semantic
image segmentation. In ICCV, 2015.

[66] G. Papandreou, I. Kokkinos, and P.-A. Savalle. Modeling
local and global deformations in deep learning: Epitomic
convolution, multiple instance learning, and sliding window
detection. In CVPR, 2015.

[67] G. Papandreou and P. Maragos. Multigrid geometric active
contour models. TIP, 16(1):229–240, 2007.

[68] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun. Large kernel
matters–improve semantic segmentation by global convolu-
tional network. arXiv:1703.02719, 2017.

[69] P. Pinheiro and R. Collobert. Recurrent convolutional neural
networks for scene labeling. In ICML, 2014.

[70] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe. Full-
resolution residual networks for semantic segmentation in
street scenes. arXiv:1611.08323, 2016.

[71] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI,
2015.

[72] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. IJCV, 2015.

[73] A. G. Schwing and R. Urtasun. Fully connected deep struc-
tured networks. arXiv:1503.02351, 2015.

[74] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun. Overfeat: Integrated recognition, localization and

detection using convolutional networks. arXiv:1312.6229,
2013.

[75] F. Shen, R. Gan, S. Yan, and G. Zeng. Semantic segmentation
via structured patch prediction, context crf and guidance crf.
In CVPR, 2017.

[76] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost
for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and context.
IJCV, 2009.

[77] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Be-
yond skip connections: Top-down modulation for object de-
tection. arXiv:1612.06851, 2016.

[78] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[79] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting
unreasonable effectiveness of data in deep learning era. In
ICCV, 2017.

[80] H. Sun, D. Xie, and S. Pu. Mixed context networks for
semantic segmentation. arXiv:1610.05854, 2016.

[81] D. Terzopoulos. Image analysis using multigrid relaxation
methods. TPAMI, (2):129–139, 1986.

[82] R. Vemulapalli, O. Tuzel, M.-Y. Liu, and R. Chellappa. Gaus-
sian conditional random field network for semantic segmenta-
tion. In CVPR, 2016.

[83] G. Wang, P. Luo, L. Lin, and X. Wang. Learning object inter-
actions and descriptions for semantic image segmentation. In
CVPR, 2017.

[84] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and
G. Cottrell. Understanding convolution for semantic segmen-
tation. arXiv:1702.08502, 2017.

[85] Z. Wu, C. Shen, and A. van den Hengel. Bridging
category-level and instance-level semantic image segmen-
tation. arXiv:1605.06885, 2016.

[86] Z. Wu, C. Shen, and A. van den Hengel. Wider or
deeper: Revisiting the resnet model for visual recognition.
arXiv:1611.10080, 2016.

[87] F. Xia, P. Wang, L.-C. Chen, and A. L. Yuille. Zoom better
to see clearer: Huamn part segmentation with auto zoom net.
arXiv:1511.06881, 2015.

[88] Z. Yan, H. Zhang, Y. Jia, T. Breuel, and Y. Yu. Combining the
best of convolutional layers and recurrent layers: A hybrid
network for semantic segmentation. arXiv:1603.04871, 2016.

[89] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a
whole: Joint object detection, scene classification and seman-
tic segmentation. In CVPR, 2012.

[90] F. Yu and V. Koltun. Multi-scale context aggregation by
dilated convolutions. In ICLR, 2016.

[91] S. Zagoruyko and N. Komodakis. Wide residual networks.
arXiv:1605.07146, 2016.

[92] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvo-
lutional networks for mid and high level feature learning. In
ICCV, 2011.

[93] R. Zhang, S. Tang, M. Lin, J. Li, and S. Yan. Global-residual
and local-boundary refinement networks for rectifying scene
parsing predictions. IJCAI, 2017.

[94] R. Zhang, S. Tang, Y. Zhang, J. Li, and S. Yan. Scale-adaptive
convolutions for scene parsing. In ICCV, 2017.



[95] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. arXiv:1612.01105, 2016.

[96] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. Torr. Conditional random
fields as recurrent neural networks. In ICCV, 2015.

[97] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Tor-
ralba. Scene parsing through ade20k dataset. In CVPR, 2017.


