
Auto-DeepLab:
Hierarchical Neural Architecture Search for Semantic Image Segmentation

Chenxi Liu1∗, Liang-Chieh Chen2, Florian Schroff2, Hartwig Adam2, Wei Hua2,
Alan Yuille1, Li Fei-Fei3

1Johns Hopkins University 2Google 3Stanford University

Abstract

Recently, Neural Architecture Search (NAS) has success-
fully identified neural network architectures that exceed hu-
man designed ones on large-scale image classification. In
this paper, we study NAS for semantic image segmentation.
Existing works often focus on searching the repeatable cell
structure, while hand-designing the outer network structure
that controls the spatial resolution changes. This choice
simplifies the search space, but becomes increasingly prob-
lematic for dense image prediction which exhibits a lot more
network level architectural variations. Therefore, we pro-
pose to search the network level structure in addition to the
cell level structure, which forms a hierarchical architecture
search space. We present a network level search space that
includes many popular designs, and develop a formulation
that allows efficient gradient-based architecture search (3
P100 GPU days on Cityscapes images). We demonstrate
the effectiveness of the proposed method on the challeng-
ing Cityscapes, PASCAL VOC 2012, and ADE20K datasets.
Auto-DeepLab, our architecture searched specifically for
semantic image segmentation, attains state-of-the-art per-
formance without any ImageNet pretraining.1

1. Introduction
Deep neural networks have been proved successful

across a large variety of artificial intelligence tasks, includ-
ing image recognition [38, 25], speech recognition [27],
machine translation [73, 81] etc. While better optimiz-
ers [36] and better normalization techniques [32, 80] cer-
tainly played an important role, a lot of the progress comes
from the design of neural network architectures. In com-
puter vision, this holds true for both image classification
[38, 72, 75, 76, 74, 25, 85, 31, 30] and dense image predic-
tion [16, 51, 7, 64, 56, 55].

More recently, in the spirit of AutoML and democra-

∗Work done while an intern at Google.
1Code for Auto-DeepLab released at https://github.com/

tensorflow/models/tree/master/research/deeplab.

Auto Search
Model Cell Network Dataset Days Task

ResNet [25] 7 7 - - Cls
DenseNet [31] 7 7 - - Cls
DeepLabv3+ [11] 7 7 - - Seg

NASNet [93] 3 7 CIFAR-10 2000 Cls
AmoebaNet [62] 3 7 CIFAR-10 2000 Cls
PNASNet [47] 3 7 CIFAR-10 150 Cls
DARTS [49] 3 7 CIFAR-10 4 Cls
DPC [6] 3 7 Cityscapes 2600 Seg

Auto-DeepLab 3 3 Cityscapes 3 Seg

Table 1: Comparing our work against other CNN architec-
tures with two-level hierarchy. The main differences in-
clude: (1) we directly search CNN architecture for semantic
segmentation, (2) we search the network level architecture
as well as the cell level one, and (3) our efficient search only
requires 3 P100 GPU days.

tizing AI, there has been significant interest in designing
neural network architectures automatically, instead of rely-
ing heavily on expert experience and knowledge. Impor-
tantly, in the past year, Neural Architecture Search (NAS)
has successfully identified architectures that exceed human-
designed architectures on large-scale image classification
problems [93, 47, 62].

Image classification is a good starting point for NAS,
because it is the most fundamental and well-studied high-
level recognition task. In addition, there exists benchmark
datasets (e.g., CIFAR-10) with relatively small images, re-
sulting in less computation and faster training. However,
image classification should not be the end point for NAS,
and the current success shows promise to extend into more
demanding domains. In this paper, we study Neural Archi-
tecture Search for semantic image segmentation, an impor-
tant computer vision task that assigns a label like “person”
or “bicycle” to each pixel in the input image.

Naively porting ideas from image classification would
not suffice for semantic segmentation. In image classifica-
tion, NAS typically applies transfer learning from low res-

1

ar
X

iv
:1

90
1.

02
98

5v
2 

 [
cs

.C
V

] 
 6

 A
pr

 2
01

9

https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/tensorflow/models/tree/master/research/deeplab


olution images to high resolution images [93], whereas op-
timal architectures for semantic segmentation must inher-
ently operate on high resolution imagery. This suggests the
need for: (1) a more relaxed and general search space to
capture the architectural variations brought by the higher
resolution, and (2) a more efficient architecture search tech-
nique as higher resolution requires heavier computation.

We notice that modern CNN designs [25, 85, 31] usu-
ally follow a two-level hierarchy, where the outer network
level controls the spatial resolution changes, and the inner
cell level governs the specific layer-wise computations. The
vast majority of current works on NAS [93, 47, 62, 59, 49]
follow this two-level hierarchical design, but only automat-
ically search the inner cell level while hand-designing the
outer network level. This limited search space becomes
problematic for dense image prediction, which is sensitive
to the spatial resolution changes. Therefore in our work,
we propose a trellis-like network level search space that
augments the commonly-used cell level search space first
proposed in [93] to form a hierarchical architecture search
space. Our goal is to jointly learn a good combination of
repeatable cell structure and network structure specifically
for semantic image segmentation.

In terms of the architecture search method, reinforce-
ment learning [92, 93] and evolutionary algorithms [63, 62]
tend to be computationally intensive even on the low resolu-
tion CIFAR-10 dataset, therefore probably not suitable for
semantic image segmentation. We draw inspiration from
the differentiable formulation of NAS [69, 49], and de-
velop a continuous relaxation of the discrete architectures
that exactly matches the hierarchical architecture search
space. The hierarchical architecture search is conducted via
stochastic gradient descent. When the search terminates,
the best cell architecture is decoded greedily, and the best
network architecture is decoded efficiently using the Viterbi
algorithm. We directly search architecture on 321×321 im-
age crops from Cityscapes [13]. The search is very efficient
and only takes about 3 days on one P100 GPU.

We report experimental results on multiple semantic seg-
mentation benchmarks, including Cityscapes [13], PAS-
CAL VOC 2012 [15], and ADE20K [90]. Without Ima-
geNet [65] pretraining, our best model significantly out-
performs FRRN-B [60] by 8.6% and GridNet [17] by
10.9% on Cityscapes test set, and performs comparably
with other ImageNet-pretrained state-of-the-art models [82,
88, 4, 11, 6] when also exploiting the coarse annotations
on Cityscapes. Notably, our best model (without pretrain-
ing) attains the same performance as DeepLabv3+ [11]
(with pretraining) while being 2.23 times faster in Multi-
Adds. Additionally, our light-weight model attains the per-
formance only 1.2% lower than DeepLabv3+ [11], while
requiring 76.7% fewer parameters and being 4.65 times
faster in Multi-Adds. Finally, on PASCAL VOC 2012 and

ADE20K, our best model outperforms several state-of-the-
art models [90, 44, 82, 88, 83] while using strictly less data
for pretraining.

To summarize, the contribution of our paper is four-fold:

• Ours is one of the first attempts to extend NAS beyond
image classification to dense image prediction.

• We propose a network level architecture search space
that augments and complements the much-studied cell
level one, and consider the more challenging joint
search of network level and cell level architectures.

• We develop a differentiable, continuous formulation
that conducts the two-level hierarchical architecture
search efficiently in 3 GPU days.

• Without ImageNet pretraining, our model significantly
outperforms FRRN-B and GridNet, and attains com-
parable performance with other ImageNet-pretrained
state-of-the-art models on Cityscapes. On PASCAL
VOC 2012 and ADE20K, our best model also outper-
forms several state-of-the-art models.

2. Related Work
Semantic Image Segmentation Convolutional neural
networks [42] deployed in a fully convolutional manner
(FCNs [68, 51]) have achieved remarkable performance
on several semantic segmentation benchmarks. Within the
state-of-the-art systems, there are two essential compo-
nents: multi-scale context module and neural network de-
sign. It has been known that context information is cru-
cial for pixel labeling tasks [26, 70, 37, 39, 16, 54, 14, 10].
Therefore, PSPNet [88] performs spatial pyramid pooling
[21, 41, 24] at several grid scales (including image-level
pooling [50]), while DeepLab [8, 9] applies several par-
allel atrous convolution [28, 20, 68, 57, 7] with different
rates. On the other hand, the improvement of neural net-
work design has significantly driven the performance from
AlexNet [38], VGG [72], Inception [32, 76, 74], ResNet
[25] to more recent architectures, such as Wide ResNet [86],
ResNeXt [85], DenseNet [31] and Xception [12, 61]. In ad-
dition to adopting those networks as backbones for semantic
segmentation, one could employ the encoder-decoder struc-
tures [64, 2, 55, 44, 60, 58, 33, 79, 18, 11, 87, 83] which ef-
ficiently captures the long-range context information while
keeping the detailed object boundaries. Nevertheless, most
of the models require initialization from the ImageNet [65]
pretrained checkpoints except FRRN [60] and GridNet [17]
for the task of semantic segmentation. Specifically, FRRN
[60] employs a two-stream system, where full-resolution in-
formation is carried in one stream and context information
in the other pooling stream. GridNet, building on top of a
similar idea, contains multiple streams with different reso-
lutions. In this work, we apply neural architecture search



for network backbones specific for semantic segmentation.
We further show state-of-the-art performance without Im-
ageNet pretraining, and significantly outperforms FRRN
[60] and GridNet [17] on Cityscapes [13].

Neural Architecture Search Method Neural Architec-
ture Search aims at automatically designing neural network
architectures, hence minimizing human hours and efforts.
While some works [22, 34, 92, 49] search RNN cells for
language tasks, more works search good CNN architectures
for image classification.

Several papers used reinforcement learning (either pol-
icy gradients [92, 93, 5, 77] or Q-learning [3, 89]) to train
a recurrent neural network that represents a policy to gen-
erate a sequence of symbols specifying the CNN architec-
ture. An alternative to RL is to use evolutionary algorithms
(EA), that “evolves” architectures by mutating the best ar-
chitectures found so far [63, 84, 53, 48, 62]. However, these
RL and EA methods tend to require massive computation
during the search, usually thousands of GPU days. PNAS
[47] proposed a progressive search strategy that markedly
reduced the search cost while maintaining the quality of the
searched architecture. NAO [52] embedded architectures
into a latent space and performed optimization before de-
coding. Additionally, several works [59, 49, 1] utilized ar-
chitectural sharing among sampled models instead of train-
ing each of them individually, thereby further reduced the
search cost. Our work follows the differentiable NAS for-
mulation [69, 49] and extends it into the more general hier-
archical setting.

Neural Architecture Search Space Earlier papers, e.g.,
[92, 63], tried to directly construct the entire network. How-
ever, more recent papers [93, 47, 62, 59, 49] have shifted to
searching the repeatable cell structure, while keeping the
outer network level structure fixed by hand. First proposed
in [93], this strategy is likely inspired by the two-level hier-
archy commonly used in modern CNNs.

Our work still uses this cell level search space to keep
consistent with previous works. Yet one of our contributions
is to propose a new, general-purpose network level search
space, since we wish to jointly search across this two-level
hierarchy. Our network level search space shares a similar
outlook as [67], but the important difference is that [67] kept
the entire “fabrics” with no intention to alter the architec-
ture, whereas we associate an explicit weight for each con-
nection and focus on decoding a single discrete structure.
In addition, [67] was evaluated on segmenting face images
into 3 classes [35], whereas our models are evaluated on
large-scale segmentation datasets such as Cityscapes [13],
PASCAL VOC 2012 [15], and ADE20K [90].

The most similar work to ours is [6], which also studied
NAS for semantic image segmentation. However, [6] fo-
cused on searching the much smaller Atrous Spatial Pyra-

mid Pooling (ASPP) module using random search, whereas
we focus on searching the much more fundamental network
backbone architecture using more advanced and more effi-
cient search methods.

3. Architecture Search Space
This section describes our two-level hierarchical archi-

tecture search space. For the inner cell level (Sec. 3.1), we
reuse the one adopted in [93, 47, 62, 49] to keep consistent
with previous works. For the outer network level (Sec. 3.2),
we propose a novel search space based on observation and
summarization of many popular designs.

3.1. Cell Level Search Space

We define a cell to be a small fully convolutional module,
typically repeated multiple times to form the entire neural
network. More specifically, a cell is a directed acyclic graph
consisting of B blocks.

Each block is a two-branch structure, mapping from 2
input tensors to 1 output tensor. Block i in cell l may be
specified using a 5-tuple (I1, I2, O1, O2, C), where I1, I2 ∈
Ili are selections of input tensors,O1, O2 ∈ O are selections
of layer types applied to the corresponding input tensor, and
C ∈ C is the method used to combine the individual outputs
of the two branches to form this block’s output tensor, H l

i .
The cell’s output tensor H l is simply the concatenation of
the blocks’ output tensors H l

1, . . . ,H
l
B in this order.

The set of possible input tensors, Ili , consists of the out-
put of the previous cell H l−1, the output of the previous-
previous cell H l−2, and previous blocks’ output in the cur-
rent cell {H l

1, . . . ,H
l
i}. Therefore, as we add more blocks

in the cell, the next block has more choices as potential
source of input.

The set of possible layer types,O, consists of the follow-
ing 8 operators, all prevalent in modern CNNs:

• 3× 3 depthwise-separable conv
• 5× 5 depthwise-separable conv
• 3× 3 atrous conv with rate 2
• 5× 5 atrous conv with rate 2

• 3× 3 average pooling
• 3× 3 max pooling
• skip connection
• no connection (zero)

For the set of possible combination operators C, we sim-
ply let element-wise addition to be the only choice.

3.2. Network Level Search Space

In the image classification NAS framework pioneered by
[93], once a cell structure is found, the entire network is
constructed using a pre-defined pattern. Therefore the net-
work level was not part of the architecture search, hence its
search space has never been proposed nor designed.

This pre-defined pattern is simple and straightforward: a
number of “normal cells” (cells that keep the spatial reso-
lution of the feature tensor) are separated equally by insert-
ing “reduction cells” (cells that divide the spatial resolution



1

A
S

P
P

A
S

P
P

A
S

P
P

A
S

P
P

Downsample\Layer

2

4

8

16

32

1 L

sHl-1sHl-2 ...

sH1
l

sH2
l

sH3
l

sH4
l

sH5
l

sHl
concat

concat

concat
...

...2 3 4 5 L-1……

Figure 1: Left: Our network level search space with L = 12. Gray nodes represent the fixed “stem” layers, and a path along
the blue nodes represents a candidate network level architecture. Right: During the search, each cell is a densely connected
structure as described in Sec. 4.1.1. Every yellow arrow is associated with the set of values αj→i. The three arrows after
concat are associated with βls

2→s
, βls→s, β

l
2s→s respectively, as described in Sec. 4.1.2. Best viewed in color.

1

A
S

P
P

A
S

P
P

A
S

P
P

A
S

P
P

Downsample\Layer

2

4

8

16

32

1 L2 3 4 5 L-1……

(a) Network level architecture used in DeepLabv3 [9].

1

Downsample\Layer

2

4

8

16

32

1 L2 3 4 5 L-1……

(b) Network level architecture used in Conv-Deconv [56].

1

Downsample\Layer

2

4

8

16

32

1 L2 3 4 5 L-1……

(c) Network level architecture used in Stacked Hourglass [55].

Figure 2: Our network level search space is general and
includes various existing designs.

by 2 and multiply the number of filters by 2). This keep-
downsampling strategy is reasonable in the image classifi-
cation case, but in dense image prediction it is also impor-
tant to keep high spatial resolution, and as a result there are

more network level variations [9, 56, 55].
Among the various network architectures for dense im-

age prediction, we notice two principles that are consistent:

• The spatial resolution of the next layer is either twice
as large, or twice as small, or remains the same.

• The smallest spatial resolution is downsampled by 32.

Following these common practices, we propose the follow-
ing network level search space. The beginning of the net-
work is a two-layer “stem” structure that each reduces the
spatial resolution by a factor of 2. After that, there are a
total of L layers with unknown spatial resolutions, with the
maximum being downsampled by 4 and the minimum being
downsampled by 32. Since each layer may differ in spatial
resolution by at most 2, the first layer after the stem could
only be either downsampled by 4 or 8. We illustrate our net-
work level search space in Fig. 1. Our goal is then to find a
good path in this L-layer trellis.

In Fig. 2 we show that our search space is general enough
to cover many popular designs. In the future, we have plans
to relax this search space even further to include U-net ar-
chitectures [64, 45, 71], where layer l may receive input
from one more layer preceding l in addition to l − 1.

We reiterate that our work searches the network level ar-
chitecture in addition to the cell level architecture. There-
fore our search space is strictly more challenging and
general-purpose than previous works.

4. Methods

We begin by introducing a continuous relaxation of
the (exponentially many) discrete architectures that ex-
actly matches the hierarchical architecture search described
above. We then discuss how to perform architecture search
via optimization, and how to decode back a discrete archi-
tecture after the search terminates.



4.1. Continuous Relaxation of Architectures

4.1.1 Cell Architecture

We reuse the continuous relaxation described in [49]. Every
block’s output tensor H l

i is connected to all hidden states in
Ili :

H l
i =

∑
Hl

j∈Ili

Oj→i(H
l
j) (1)

In addition, we approximate each Oj→i with its continuous
relaxation Ōj→i, defined as:

Ōj→i(H
l
j) =

∑
Ok∈O

αkj→iO
k(H l

j) (2)

where

|O|∑
k=1

αkj→i = 1 ∀i, j (3)

αkj→i ≥ 0 ∀i, j, k (4)

In other words, αkj→i are normalized scalars associated with
each operator Ok ∈ O, easily implemented as softmax.

Recall from Sec. 3.1 that H l−1 and H l−2 are al-
ways included in Ili , and that H l is the concatenation of
H l

1, . . . ,H
l
B . Together with Eq. (1) and Eq. (2), the cell

level update may be summarized as:

H l = Cell(H l−1, H l−2;α) (5)

4.1.2 Network Architecture

Within a cell, all tensors are of the same spatial size, which
enables the (weighted) sum in Eq. (1) and Eq. (2). How-
ever, as clearly illustrated in Fig. 1, tensors may take dif-
ferent sizes in the network level. Therefore in order to set
up the continuous relaxation, each layer l will have at most
4 hidden states {4H l, 8H l, 16H l, 32H l}, with the upper left
superscript indicating the spatial resolution.

We design the network level continuous relaxation to ex-
actly match the search space described in Sec. 3.2. We as-
sociated a scalar with each gray arrow in Fig. 1, and the
network level update is:

sH l =βls
2→s

Cell(
s
2H l−1, sH l−2;α)

+ βls→sCell(sH l−1, sH l−2;α)

+ βl2s→sCell(2sH l−1, sH l−2;α) (6)

where s = 4, 8, 16, 32 and l = 1, 2, . . . , L. The scalars β
are normalized such that

βls→ s
2

+ βls→s + βls→2s = 1 ∀s, l (7)

βls→ s
2
≥ 0 βls→s ≥ 0 βls→2s ≥ 0 ∀s, l (8)

also implemented as softmax.
Eq. (6) shows how the continuous relaxations of the two-

level hierarchy are weaved together. In particular, β con-
trols the outer network level, hence depends on the spatial
size and layer index. Each scalar in β governs an entire set
of α, yet α specifies the same architecture that depends on
neither spatial size nor layer index.

As illustrated in Fig. 1, Atrous Spatial Pyramid Pooling
(ASPP) modules are attached to each spatial resolution at
the L-th layer (atrous rates are adjusted accordingly). Their
outputs are bilinear upsampled to the original resolution be-
fore summed to produce the prediction.

4.2. Optimization

The advantage of introducing this continuous relaxation
is that the scalars controlling the connection strength be-
tween different hidden states are now part of the differen-
tiable computation graph. Therefore they can be optimized
efficiently using gradient descent. We adopt the first-order
approximation in [49], and partition the training data into
two disjoint sets trainA and trainB. The optimization alter-
nates between:

1. Update network weights w by ∇wLtrainA(w,α, β)

2. Update architecture α, β by∇α,βLtrainB(w,α, β)

where the loss function L is the cross entropy calculated
on the semantic segmentation mini-batch. The disjoint set
partition is to prevent the architecture from overfitting the
training data.

4.3. Decoding Discrete Architectures

Cell Architecture Following [49], we decode the dis-
crete cell architecture by first retaining the 2 strongest pre-
decessors for each block (with the strength from hidden
state j to hidden state i being maxk,Ok 6=zero α

k
j→i; recall

from Sec. 3.1 that “zero” means “no connection”), and then
choose the most likely operator by taking the argmax.
Network Architecture Eq. (7) essentially states that the
“outgoing probability” at each of the blue nodes in Fig. 1
sums to 1. In fact, the β values can be interpreted as
the “transition probability” between different “states” (spa-
tial resolution) across different “time steps” (layer number).
Quite intuitively, our goal is to find the path with the “max-
imum probability” from start to end. This path can be de-
coded efficiently using the classic Viterbi algorithm, as in
our implementation.

5. Experimental Results
Herein, we report our architecture search implementa-

tion details as well as the search results. We then report
semantic segmentation results on benchmark datasets with
our best found architecture.



1

A
S

P
P

A
S

P
P

A
S

P
P

A
S

P
P

Downsample\Layer

2

4

8

16

32

Hl-1Hl-2 ... Hl

concat

atr 
5x5

sep
3x3

+

atr 
3x3

sep
3x3

+

sep
3x3

sep
3x3

+

sep
5x5

sep
5x5

+

atr 
5x5

sep
5x5

+

1 L2 3 4 5 L-1……

Figure 3: The Auto-DeepLab architecture found by our Hierarchical Neural Architecture Search on Cityscapes. Gray dashed
arrows show the connection with maximum β at each node. atr: atrous convolution. sep: depthwise-separable convolution.

5.1. Architecture Search Implementation Details

We consider a total of L = 12 layers in the network, and
B = 5 blocks in a cell. The network level search space has
2.9 × 104 unique paths, and the number of cell structures
is 5.6 × 1014. So the size of the joint, hierarchical search
space is in the order of 1019.

We follow the common practice of doubling the number
of filters when halving the height and width of feature ten-
sor. Every blue node in Fig. 1 with downsample rate s has
B × F × s

4 output filters, where F is the filter multiplier
controlling the model capacity. We set F = 8 during the
architecture search. A stride 2 convolution is used for all
s
2 → s connections, both to reduce spatial size and dou-
ble the number of filters. Bilinear upsampling followed by
1 × 1 convolution is used for all 2s → s connections, both
to increase spatial size and halve the number of filters.

The Atrous Spatial Pyramid Pooling module used in [9]
has 5 branches: one 1 × 1 convolution, three 3 × 3 convo-
lution with various atrous rates, and pooled image feature.
During the search, we simplify ASPP to have 3 branches
instead of 5 by only using one 3×3 convolution with atrous
rate 96

s . The number of filters produced by each ASPP
branch is still B × F × s

4 .
We conduct architecture search on the Cityscapes dataset

[13] for semantic image segmentation. More specifically,
we use 321× 321 random image crops from half-resolution
(512 × 1024) images in the train fine set. We randomly
select half of the images in train fine as trainA, and the other
half as trainB (see Sec. 4.2).

The architecture search optimization is conducted for a
total of 40 epochs. The batch size is 2 due to GPU mem-
ory constraint. When learning network weights w, we use
SGD optimizer with momentum 0.9, cosine learning rate
that decays from 0.025 to 0.001, and weight decay 0.0003.
The initial values of α, β before softmax are sampled from
a standard Gaussian times 0.001. They are optimized using
Adam optimizer [36] with learning rate 0.003 and weight
decay 0.001. We empirically found that if α, β are opti-
mized from the beginning when w are not well trained, the

Figure 4: Validation accuracy during 40 epochs of architec-
ture search optimization across 10 random trials.

architecture tends to fall into bad local optima. Therefore
we start optimizing α, β after 20 epochs. The entire archi-
tecture search optimization takes about 3 days on one P100
GPU. Fig. 4 shows that the validation accuracy steadily im-
proves throughout this process. We also tried searching for
longer epochs (60, 80, 100), but did not observe benefit.

Fig. 3 visualizes the best architecture found. In terms of
network level architecture, higher resolution is preferred at
both beginning (stays at downsample by 4 for longer) and
end (ends at downsample by 8). We also show the strongest
outgoing connection at each node using gray dashed arrows.
We observe a general tendency to downsample in the first
3/4 layers and upsample in the last 1/4 layers. In terms of
cell level architecture, the conjunction of atrous convolution
and depthwise-separable convolution is often used, suggest-
ing that the importance of context has been learned. Note
that atrous convolution is rarely found to be useful in cells
for image classification2.

5.2. Semantic Segmentation Results

We evaluate the performance of our found best architec-
ture (Fig. 3) on Cityscapes [13], PASCAL VOC 2012 [15],
and ADE20K [90] datasets.

2Among NASNet-{A, B, C}, PNASNet-{1, 2, 3, 4, 5}, AmoebaNet-
{A, B, C}, ENAS, DARTS, atrous convolution was used only once in
AmoebaNet-B reduction cell.



Method ImageNet F Multi-Adds Params mIOU (%)

Auto-DeepLab-S 20 333.25B 10.15M 79.74
Auto-DeepLab-M 32 460.93B 21.62M 80.04
Auto-DeepLab-L 48 695.03B 44.42M 80.33

FRRN-A [60] - - 17.76M 65.7
FRRN-B [60] - - 24.78M -

DeepLabv3+ [11] 3 - 1551.05B 43.48M 79.55

Table 2: Cityscapes validation set results with different
Auto-DeepLab model variants. F : the filter multiplier con-
trolling the model capacity. All our models are trained from
scratch and with single-scale input during inference.

Method itr-500K itr-1M itr-1.5M SDP mIOU (%)

Auto-DeepLab-S 3 75.20
Auto-DeepLab-S 3 77.09
Auto-DeepLab-S 3 78.00
Auto-DeepLab-S 3 3 79.74

Table 3: Cityscapes validation set results. We experi-
ment with the effect of adopting different training iterations
(500K, 1M, and 1.5M iterations) and the Scheduled Drop
Path method (SDP). All models are trained from scratch.

We follow the same training protocol in [9, 11]. In brief,
during training we adopt a polynomial learning rate sched-
ule [50] with initial learning rate 0.05, and large crop size
(e.g., 769 × 769 on Cityscapes, and 513 × 513 on PAS-
CAL VOC 2012 and resized ADE20K images). Batch nor-
malization parameters [32] are fine-tuned during training.
The models are trained from scratch with 1.5M iterations
on Cityscapes, 1.5M iterations on PASCAL VOC 2012, and
4M iterations on ADE20K, respectively.

We adopt the simple encoder-decoder structure similar to
DeepLabv3+ [11]. Specifically, our encoder consists of our
found best network architecture augmented with the ASPP
module [8, 9], and our decoder is the same as the one in
DeepLabv3+ which recovers the boundary information by
exploiting the low-level features that have downsample rate
4. Additionally, we redesign the “stem” structure with three
3 × 3 convolutions (with stride 2 in the first and third con-
volutions). The first two convolutions have 64 filters while
the third convolution has 128 filters. This “stem” has been
shown to be effective for segmentation in [88, 78].

5.2.1 Cityscapes

Cityscapes [13] contains high quality pixel-level annota-
tions of 5000 images with size 1024 × 2048 (2975, 500,
and 1525 for the training, validation, and test sets respec-
tively) and about 20000 coarsely annotated training images.
Following the evaluation protocol [13], 19 semantic labels
are used for evaluation without considering the void label.

In Tab. 2, we report the Cityscapes validation set results.
Similar to MobileNets [29, 66], we adjust the model capac-

Method ImageNet Coarse mIOU (%)

FRRN-A [60] 63.0
GridNet [17] 69.5
FRRN-B [60] 71.8

Auto-DeepLab-S 79.9
Auto-DeepLab-L 80.4

Auto-DeepLab-S 3 80.9
Auto-DeepLab-L 3 82.1

ResNet-38 [82] 3 3 80.6
PSPNet [88] 3 3 81.2
Mapillary [4] 3 3 82.0

DeepLabv3+ [11] 3 3 82.1
DPC [6] 3 3 82.7

DRN CRL Coarse [91] 3 3 82.8

Table 4: Cityscapes test set results with multi-scale inputs
during inference. ImageNet: Models pretrained on Ima-
geNet. Coarse: Models exploit coarse annotations.

ity by changing the filter multiplier F . As shown in the
table, higher model capacity leads to better performance at
the cost of slower speed (indicated by larger Multi-Adds).

In Tab. 3, we show that increasing the training iterations
from 500K to 1.5M iterations improves the performance
by 2.8%, when employing our light-weight model vari-
ant, Auto-DeepLab-S. Additionally, adopting the Scheduled
Drop Path [40, 93] further improves the performance by
1.74%, reaching 79.74% on Cityscapes validation set.

We then report the test set results in Tab. 4. Without
any pretraining, our best model (Auto-DeepLab-L) signif-
icantly outperforms FRNN-B [60] by 8.6% and GridNet
[17] by 10.9%. With extra coarse annotations, our model
Auto-DeepLab-L, without pretraining on ImageNet [65],
achieves the test set performance of 82.1%, outperform-
ing PSPNet [88] and Mapillary [4], and attains the same
performance as DeepLabv3+ [11] while requiring 55.2%
fewer Mutli-Adds computations. Notably, our light-weight
model variant, Auto-DeepLab-S, attains 80.9% on the test
set, comparable to PSPNet, while using merely 10.15M pa-
rameters and 333.25B Multi-Adds.

5.2.2 PASCAL VOC 2012

PASCAL VOC 2012 [15] contains 20 foreground object
classes and one background class. We augment the original
dataset with the extra annotations provided by [23], result-
ing in 10582 (train aug) training images.

In Tab. 5, we report our validation set results. Our best
model, Auto-DeepLab-L, with single scale inference sig-
nificantly outperforms [19] by 20.36%. Additionally, for
all our model variants, adopting multi-scale inference im-
proves the performance by about 1%. Further pretraining
our models on COCO [46] for 4M iterations improves the



Method MS COCO mIOU (%)

DropBlock [19] 53.4

Auto-DeepLab-S 71.68
Auto-DeepLab-S 3 72.54

Auto-DeepLab-M 72.78
Auto-DeepLab-M 3 73.69

Auto-DeepLab-L 73.76
Auto-DeepLab-L 3 75.26

Auto-DeepLab-S 3 78.31
Auto-DeepLab-S 3 3 80.27

Auto-DeepLab-M 3 79.78
Auto-DeepLab-M 3 3 80.73

Auto-DeepLab-L 3 80.75
Auto-DeepLab-L 3 3 82.04

Table 5: PASCAL VOC 2012 validation set results. We ex-
periment with the effect of adopting multi-scale inference
(MS) and COCO-pretrained checkpoints (COCO). With-
out any pretraining, our best model (Auto-DeepLab-L) out-
performs DropBlock by 20.36%. All our models are not
pretrained with ImageNet images.

Method ImageNet COCO mIOU (%)

Auto-DeepLab-S 3 82.5
Auto-DeepLab-M 3 84.1
Auto-DeepLab-L 3 85.6

RefineNet [44] 3 3 84.2
ResNet-38 [82] 3 3 84.9

PSPNet [88] 3 3 85.4
DeepLabv3+ [11] 3 3 87.8

MSCI [43] 3 3 88.0

Table 6: PASCAL VOC 2012 test set results. Our Auto-
DeepLab-L attains comparable performance with many
state-of-the-art models which are pretrained on both Ima-
geNet and COCO datasets. We refer readers to the official
leader-board for other state-of-the-art models.

performance significantly.
Finally, we report the PASCAL VOC 2012 test set re-

sult with our COCO-pretrained model variants in Tab. 6.
As shown in the table, our best model attains the perfor-
mance of 85.6% on the test set, outperforming RefineNet
[44] and PSPNet [88]. Our model is lagged behind the top-
performing DeepLabv3+ [11] with Xception-65 as network
backbone by 2.2%. We think that PASCAL VOC 2012
dataset is too small to train models from scratch and pre-
training on ImageNet is still beneficial in this case.

Method ImageNet mIOU (%) Pixel-Acc (%) Avg (%)

Auto-DeepLab-S 40.69 80.60 60.65
Auto-DeepLab-M 42.19 81.09 61.64
Auto-DeepLab-L 43.98 81.72 62.85

CascadeNet (VGG-16) [90] 3 34.90 74.52 54.71
RefineNet (ResNet-152) [44] 3 40.70 - -
UPerNet (ResNet-101) [83] † 3 42.66 81.01 61.84

PSPNet (ResNet-152) [88] 3 43.51 81.38 62.45
PSPNet (ResNet-269) [88] 3 44.94 81.69 63.32

DeepLabv3+ (Xception-65) [11] † 3 45.65 82.52 64.09

Table 7: ADE20K validation set results. We employ multi-
scale inputs during inference. †: Results are obtained from
their up-to-date model zoo websites respectively. Ima-
geNet: Models pretrained on ImageNet. Avg: Average of
mIOU and Pixel-Accuracy.

5.2.3 ADE20K

ADE20K [90] has 150 semantic classes and high quality
annotations of 20000 training images and 2000 validation
images. In our experiments, the images are all resized so
that the longer side is 513 during training.

In Tab. 7, we report our validation set results. Our mod-
els outperform some state-of-the-art models, including Re-
fineNet [44], UPerNet [83], and PSPNet (ResNet-152) [88];
however, without any ImageNet [65] pretraining, our per-
formance is lagged behind the latest work of [11].

6. Conclusion

In this paper, we present one of the first attempts to ex-
tend Neural Architecture Search beyond image classifica-
tion to dense image prediction problems. Instead of fixating
on the cell level, we acknowledge the importance of spa-
tial resolution changes, and embrace the architectural vari-
ations by incorporating the network level into the search
space. We also develop a differentiable formulation that
allows efficient (about 1000× faster than DPC [6]) archi-
tecture search over our two-level hierarchical search space.
The result of the search, Auto-DeepLab, is evaluated by
training on benchmark semantic segmentation datasets from
scratch. On Cityscapes, Auto-DeepLab significantly out-
performs the previous state-of-the-art by 8.6%, and per-
forms comparably with ImageNet-pretrained top models
when exploiting the coarse annotations. On PASCAL VOC
2012 and ADE20K, Auto-DeepLab also outperforms sev-
eral ImageNet-pretrained state-of-the-art models.

For future work, within the current framework, related
applications such as object detection should be plausible;
we could also try untying the cell architecture α across dif-
ferent layers (cf . [77]) with little computation overhead.
Beyond the current framework, a more general network
level search space should be beneficial (cf . Sec. 3.2).

Acknowledgments We thank Sergey Ioffe for valuable
feedback; Cloud AI and Mobile Vision team for support.
CL and AY acknowledge a gift from YiTu.

http://host.robots.ox.ac.uk:8080/anonymous/AGUWRT.html
http://host.robots.ox.ac.uk:8080/anonymous/8NFFR1.html
http://host.robots.ox.ac.uk:8080/anonymous/PJ8WHS.html


References
[1] K. Ahmed and L. Torresani. Maskconnect: Connectivity

learning by gradient descent. In ECCV, 2018. 3
[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image
segmentation. arXiv:1511.00561, 2015. 2

[3] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neu-
ral network architectures using reinforcement learning. In
ICLR, 2017. 3

[4] S. R. Bulò, L. Porzi, and P. Kontschieder. In-place acti-
vated batchnorm for memory-optimized training of dnns. In
CVPR, 2018. 2, 7

[5] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient ar-
chitecture search by network transformation. In AAAI, 2018.
3

[6] L.-C. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph,
F. Schroff, H. Adam, and J. Shlens. Searching for effi-
cient multi-scale architectures for dense image prediction. In
NIPS, 2018. 1, 2, 3, 7, 8

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. In ICLR, 2015. 1,
2

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected crfs. TPAMI, 2017. 2, 7

[9] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-
thinking atrous convolution for semantic image segmenta-
tion. arXiv:1706.05587, 2017. 2, 4, 6, 7

[10] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-
tention to scale: Scale-aware semantic image segmentation.
In CVPR, 2016. 2

[11] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. In ECCV, 2018. 1, 2, 7, 8

[12] F. Chollet. Xception: Deep learning with depthwise separa-
ble convolutions. In CVPR, 2017. 2

[13] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In CVPR, 2016. 2, 3, 6, 7

[14] J. Dai, K. He, and J. Sun. Convolutional feature masking for
joint object and stuff segmentation. In CVPR, 2015. 2

[15] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge a retrospective. IJCV, 2014. 2, 3, 6,
7

[16] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. PAMI, 2013. 1, 2

[17] D. Fourure, R. Emonet, E. Fromont, D. Muselet,
A. Tremeau, and C. Wolf. Residual conv-deconv grid net-
work for semantic segmentation. In BMVC, 2017. 2, 3, 7

[18] J. Fu, J. Liu, Y. Wang, and H. Lu. Stacked deconvolutional
network for semantic segmentation. arXiv:1708.04943,
2017. 2

[19] G. Ghiasi, T.-Y. Lin, and Q. V. Le. Dropblock: A regulariza-
tion method for convolutional networks. In NIPS, 2018. 7,
8

[20] A. Giusti, D. Ciresan, J. Masci, L. Gambardella, and
J. Schmidhuber. Fast image scanning with deep max-pooling
convolutional neural networks. In ICIP, 2013. 2

[21] K. Grauman and T. Darrell. The pyramid match kernel:
Discriminative classification with sets of image features. In
ICCV, 2005. 2

[22] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink,
and J. Schmidhuber. Lstm: A search space odyssey.
arXiv:1503.04069, 2015. 3

[23] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.
Semantic contours from inverse detectors. In ICCV, 2011. 7

[24] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In
ECCV, 2014. 2

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 1, 2

[26] X. He, R. S. Zemel, and M. Carreira-Perpindn. Multiscale
conditional random fields for image labeling. In CVPR,
2004. 2

[27] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012. 1

[28] M. Holschneider, R. Kronland-Martinet, J. Morlet, and
P. Tchamitchian. A real-time algorithm for signal analy-
sis with the help of the wavelet transform. In Wavelets:
Time-Frequency Methods and Phase Space, pages 289–297.
Springer, 1989. 2

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv:1704.04861, 2017. 7

[30] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-
works. In CVPR, 2018. 1

[31] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In CVPR, 2017.
1, 2

[32] S. Ioffe and C. Szegedy. Batch normalization: accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 1, 2, 7

[33] M. A. Islam, M. Rochan, N. D. Bruce, and Y. Wang. Gated
feedback refinement network for dense image labeling. In
CVPR, 2017. 2

[34] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empiri-
cal exploration of recurrent network architectures. In ICML,
2015. 3

[35] A. Kae, K. Sohn, H. Lee, and E. Learned-Miller. Augment-
ing crfs with boltzmann machine shape priors for image la-
beling. In CVPR, 2013. 3

[36] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015. 1, 6

[37] P. Kohli, P. H. Torr, et al. Robust higher order potentials for
enforcing label consistency. IJCV, 82(3):302–324, 2009. 2



[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 1, 2

[39] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Associa-
tive hierarchical crfs for object class image segmentation. In
ICCV, 2009. 2

[40] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:
Ultra-deep neural networks without residuals. In ICLR,
2017. 7

[41] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006. 2

[42] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-
tation, 1(4):541–551, 1989. 2

[43] D. Lin, Y. Ji, D. Lischinski, D. Cohen-Or, and H. Huang.
Multi-scale context intertwining for semantic segmentation.
In ECCV, 2018. 8

[44] G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet: Multi-
path refinement networks with identity mappings for high-
resolution semantic segmentation. In CVPR, 2017. 2, 8

[45] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
In CVPR, 2017. 4

[46] T.-Y. Lin et al. Microsoft coco: Common objects in context.
In ECCV, 2014. 7

[47] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li,
L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progressive
neural architecture search. In ECCV, 2018. 1, 2, 3

[48] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu. Hierarchical representations for efficient
architecture search. In ICLR, 2018. 3

[49] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable
architecture search. arXiv:1806.09055, 2018. 1, 2, 3, 5

[50] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking
wider to see better. arXiv:1506.04579, 2015. 2, 7

[51] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 1, 2

[52] R. Luo, F. Tian, T. Qin, and T.-Y. Liu. Neural architecture
optimization. In NIPS, 2018. 3

[53] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal,
D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan,
N. Duffy, and B. Hodjat. Evolving deep neural networks.
arXiv:1703.00548, 2017. 3

[54] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feed-
forward semantic segmentation with zoom-out features. In
CVPR, 2015. 2

[55] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-
works for human pose estimation. In ECCV, 2016. 1, 2,
4

[56] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In ICCV, 2015. 1, 4

[57] G. Papandreou, I. Kokkinos, and P.-A. Savalle. Modeling
local and global deformations in deep learning: Epitomic
convolution, multiple instance learning, and sliding window
detection. In CVPR, 2015. 2

[58] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun. Large kernel
matters–improve semantic segmentation by global convolu-
tional network. In CVPR, 2017. 2

[59] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Ef-
ficient neural architecture search via parameter sharing. In
ICML, 2018. 2, 3

[60] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe. Full-
resolution residual networks for semantic segmentation in
street scenes. In CVPR, 2017. 2, 3, 7

[61] H. Qi, Z. Zhang, B. Xiao, H. Hu, B. Cheng, Y. Wei, and
J. Dai. Deformable convolutional networks – coco detection
and segmentation challenge 2017 entry. ICCV COCO Chal-
lenge Workshop, 2017. 2

[62] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Reg-
ularized evolution for image classifier architecture search.
arXiv:1802.01548, 2018. 1, 2, 3

[63] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,
J. Tan, Q. Le, and A. Kurakin. Large-scale evolution of im-
age classifiers. In ICML, 2017. 2, 3

[64] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In MIC-
CAI, 2015. 1, 2, 4

[65] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 2015. 2, 7, 8

[66] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. In CVPR, 2018. 7

[67] S. Saxena and J. Verbeek. Convolutional neural fabrics. In
NIPS, 2016. 3

[68] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. In ICLR, 2014.
2

[69] R. Shin, C. Packer, and D. Song. Differentiable neural net-
work architecture search. In ICLR Workshop, 2018. 2, 3

[70] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost
for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and con-
text. IJCV, 2009. 2

[71] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Be-
yond skip connections: Top-down modulation for object de-
tection. arXiv:1612.06851, 2016. 4

[72] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
1, 2

[73] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In NIPS, 2014. 1

[74] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, 2017. 1, 2

[75] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 1

[76] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
CVPR, 2016. 1, 2



[77] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le.
Mnasnet: Platform-aware neural architecture search for mo-
bile. arXiv:1807.11626, 2018. 3, 8

[78] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and
G. Cottrell. Understanding convolution for semantic seg-
mentation. In WACV, 2018. 7

[79] Z. Wojna, V. Ferrari, S. Guadarrama, N. Silberman, L.-C.
Chen, A. Fathi, and J. Uijlings. The devil is in the decoder.
In BMVC, 2017. 2

[80] Y. Wu and K. He. Group normalization. In ECCV, 2018. 1
[81] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,

W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
et al. Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
arXiv:1609.08144, 2016. 1

[82] Z. Wu, C. Shen, and A. van den Hengel. Wider or
deeper: Revisiting the resnet model for visual recognition.
arXiv:1611.10080, 2016. 2, 7, 8

[83] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun. Unified per-
ceptual parsing for scene understanding. In ECCV, 2018. 2,
8

[84] L. Xie and A. Yuille. Genetic cnn. In ICCV, 2017. 3
[85] S. Xie, R. Girshick, P. Dollr, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In CVPR,
2017. 1, 2

[86] S. Zagoruyko and N. Komodakis. Wide residual networks.
In BMVC, 2016. 2

[87] Z. Zhang, X. Zhang, C. Peng, D. Cheng, and J. Sun. Ex-
fuse: Enhancing feature fusion for semantic segmentation.
In ECCV, 2018. 2

[88] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, 2017. 2, 7, 8

[89] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu. Practical
block-wise neural network architecture generation. In CVPR,
2018. 3

[90] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Tor-
ralba. Scene parsing through ade20k dataset. In CVPR, 2017.
2, 3, 6, 8

[91] Y. Zhuang, F. Yang, L. Tao, C. Ma, Z. Zhang, Y. Li, H. Jia,
X. Xie, and W. Gao. Dense relation network: Learning con-
sistent and context-aware representation for semantic image
segmentation. In ICIP, 2018. 7

[92] B. Zoph and Q. V. Le. Neural architecture search with rein-
forcement learning. In ICLR, 2017. 2, 3

[93] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning
transferable architectures for scalable image recognition. In
CVPR, 2018. 1, 2, 3, 7


